洛谷P2766 最长不下降子序列问题(最大流)
第一问直接$dp$解决,求出$len$
然后用$f[i]$表示以$i$为结尾的最长不下降子序列长度,把每一个点拆成$A_i,B_i$两个点,然后从$A_i$向$B_i$连容量为$1$的边
然后考虑$f[i]$,如果$f[i]==1$,则从$s$向$A_i$连边,如果$f[i]==len$,那么从$B_i$向$t$连边
然后将每一个$j<i,f[j]+1==f[i],a[j]\leq a[i]$的$j$向$i$连边
以上容量全为$1$
建完图之后跑一个最大流
这样可以保证分层图里选出来的不下降子序列长度必为$len$
然后第三问的话,就把关于$1$和$n$的容量限制给取消掉就好了,就是$s$向$A_1$连$inf$,$A_1$向$B_1$连$inf$,$A_n$向$B_n$连$inf$,$B_n$向$t$连$inf$(如果$f[n]!=len$就不用连了)
然后再跑一次最大流就是第三问的答案
//minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=;
int ver[M],Next[M],head[N],edge[M],cur[N],dep[N],tot=,a[N],dp[N];
int n,m,s,t,ans,len=;
queue<int> q;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,edge[tot]=;
}
bool bfs(){
memset(dep,-,sizeof(dep));
while(!q.empty()) q.pop();
for(int i=;i<=*n+;++i) cur[i]=head[i];
q.push(s),dep[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(dep[v]<&&edge[i]){
dep[v]=dep[u]+,q.push(v);
if(v==t) return true;
}
}
}
return false;
}
int dfs(int u,int limit){
if(!limit||u==t) return limit;
int flow=,f;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(dep[v]==dep[u]+&&(f=dfs(v,min(limit,edge[i])))){
flow+=f,limit-=f;
edge[i]-=f,edge[i^]+=f;
if(!limit) break;
}
}
return flow;
}
void dinic(){
while(bfs()) ans+=dfs(s,inf);
}
int main(){
n=read();
for(int i=;i<=n;++i) a[i]=read(),dp[i]=;
for(int i=;i<=n;++i){
for(int j=;j<i;++j)
if(a[j]<=a[i]) cmax(dp[i],dp[j]+);
cmax(len,dp[i]);
}
printf("%d\n",len);
s=,t=*n+;
for(int i=;i<=n;++i){
if(dp[i]==) add(s,i,);
if(dp[i]==len) add(i+n,t,);
add(i,i+n,);
}
for(int i=;i<=n;++i)
for(int j=;j<i;++j)
if(a[j]<=a[i]&&dp[j]==dp[i]-) add(j+n,i,);
dinic();printf("%d\n",ans);
add(,n+,inf),add(s,,inf);
if(dp[n]==len) add(n,n<<,inf),add(n<<,t,inf);
dinic();printf("%d\n",ans);
return ;
}
洛谷P2766 最长不下降子序列问题(最大流)的更多相关文章
- 洛谷 P2766 最长不下降子序列问【dp+最大流】
死于开小数组的WA?! 第一问n方dp瞎搞一下就成,f[i]记录以i结尾的最长不下降子序列.记答案为mx 第二问网络流,拆点限制流量,s向所有f[i]为1的点建(s,i,1),所有f[i]为mx(i+ ...
- 洛谷 [P2766] 最长不下降子序列问题
啊啊啊,再把MAXN和MAXM搞反我就退役 层次图求不相交路径数 第一问简单DP 第二问想办法把每一个不上升子序列转化成DAG上的一条路径,就转换成了求不相交路径数 因为每一个数只能用一次,所以要拆点 ...
- 洛谷P2766 最长不下降子序列问题 网络流_DP
Code: #include<cstdio> #include<iostream> #include<vector> #include<algorithm&g ...
- 洛谷.T22136.最长不下降子序列(01归并排序 分治)
题目链接 \(Description\) 给定一个长为n的序列,每次可以反转 \([l,r]\) 区间,代价为 \(r-l+1\).要求在\(4*10^6\)代价内使其LIS长度最长,并输出需要操作的 ...
- 【24题】P2766最长不下降子序列问题
网络流二十四题 网络流是个好东西,希望我也会. 网络流?\(orz\ zsy!!!!!\) P2766 最长不下降子序列问题 考虑我们是如何\(dp\)这个\(LIS\)的. 我们是倒着推,设置\(d ...
- [**P2766** 最长不下降子序列问题](https://www.luogu.org/problemnew/show/P2766)
P2766 最长不下降子序列问题 考虑我们是如何\(dp\)这个\(LIS\)的. 我们是倒着推,设置\(dp(i)\)代表以\(i\)为起点的\(LIS\)是多少.转移太显然了 \[ dp(i)=m ...
- P2766 最长不下降子序列问题 网络流重温
P2766 最长不下降子序列问题 这个题目还是比较简单的,第一问就是LIS 第二问和第三问都是网络流. 第二问要怎么用网络流写呢,首先,每一个只能用一次,所以要拆点. 其次,我们求的是长度为s的不下降 ...
- 洛谷P2766 最长递增子序列问题
https://www.luogu.org/problemnew/show/P2766 注:题目描述有误,本题求的是最长不下降子序列 方案无限多时输出 n 网络流求方案数,长见识了 第一问: DP 同 ...
- P2766 最长不下降子序列问题 网络流
link:https://www.luogu.org/problemnew/show/P2766 题意 给定正整数序列x1,...,xn . (1)计算其最长不下降子序列的长度s. (2)计算从给定的 ...
随机推荐
- Java面向对象-String类
1,实例化String对象 有两种方式,我们直接看代码: package com.java1234.chap03.sec08; public class Demo1 { public static v ...
- 仿照admin写一个startk组件
settings.py INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.conten ...
- Mac设置Root密码
[Mac设置Root密码] Mac系统重新设置root用户密码 如果不知道root用户密码,需要重设. 命令[sudo passwd root ] 然后提示你输入当前登录用户密码,通过以后, ...
- oracle delete t1;drop table t1;drop table t1 purge
Truncate tableTruncate table t1;Ddl语言,自动提交:不能回退:回收范围::挪动高水位线:将所有的数据清除,保留表结构:将表缩的最小:保留表的约束和权限. Drop t ...
- sql2012新的系统函数&分析函数
一 .系统函数 1.字符串类函数:不用判断类型和NULL的字符串连接CONCAT函数 SQL Server本来对字符串的连接很简单,直接使用“+”号,但是需要注意两个问题,一是必须类型都是字符串类型, ...
- zookeeper 面试题 有用
.zookeeper是什么框架? zookeeper是一个开源的分布式协调服务框架. 2.有哪些应用场景? 应用场景:分布式通知/协调.负载均衡.配置中心.分布式锁.分布式队列等. 3.使用什么协议? ...
- fopencookie函数详解
今天看DPDK时,看到了fopencookie函数,以前基本没有用过该函数,乘此机会好好看看如何使用. 1. 函数头文件与函数原型 函数头文件: #include <stdio.h> 函数 ...
- Linux下DNS配置
一.本机DNS配置 参考:http://blog.sina.com.cn/s/blog_68d6e9550100k3b7.html 二.DNS服务器搭建 http://toutiao.com/i631 ...
- Azure 网站、云服务和虚拟机比较
最后更新时间(英文版):09/24/2014 最后更新时间(中文版):04/11/2015 Azure 提供几种方式托管 web 应用程序,如 Azure 网站.云服务和虚拟机.查看这些不同的选项后, ...
- properties配置文件在idea中默认utf-8编码可能会乱码的解决
使用idea集成开发环境时,有时在properties配置文件有中文,在线上拿到的时乱码,如何解决? 这样设置: 最后说一下,setting设置是对当前项目的,想要所有的项目都有相同的设置,需要在 中 ...