Flight

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 2014    Accepted Submission(s): 428

Problem Description
Recently, Shua Shua had a big quarrel with his GF. He is so upset that he decides to take a trip to some other city to avoid meeting her. He will travel only by air and he can go to any city if there exists a flight and it can help him reduce the total cost to the destination. There's a problem here: Shua Shua has a special credit card which can reduce half the price of a ticket ( i.e. 100 becomes 50, 99 becomes 49. The original and reduced price are both integers. ). But he can only use it once. He has no idea which flight he should choose to use the card to make the total cost least. Can you help him?
 
Input
There are no more than 10 test cases. Subsequent test cases are separated by a blank line. 
The first line of each test case contains two integers N and M ( 2 <= N <= 100,000

0 <= M <= 500,000 ), representing the number of cities and flights. Each of the following M lines contains "X Y D" representing a flight from city X to city Y with ticket price D ( 1 <= D <= 100,000 ). Notice that not all of the cities will appear in the list! The last line contains "S E" representing the start and end city. X, Y, S, E are all strings consisting of at most 10 alphanumeric characters.

 
Output
One line for each test case the least money Shua Shua have to pay. If it's impossible for him to finish the trip, just output -1.
 
Sample Input
4 4
Harbin Beijing 500
Harbin Shanghai 1000
Beijing Chengdu 600
Shanghai Chengdu 400
Harbin Chengdu

4 0
Harbin Chengdu

 
Sample Output
800
-1

Hint

In the first sample, Shua Shua should use the card on the flight from
Beijing to Chengdu, making the route Harbin->Beijing->Chengdu have the
least total cost 800. In the second sample, there's no way for him to get to
Chengdu from Harbin, so -1 is needed.

 
Author
Edelweiss
 
Source
 
Recommend
zhouzeyong   |   We have carefully selected several similar problems for you:  3501 3502 3503 3504 3505 
 

题意:

在N个点,M条带权边的图上,查询从点s到点e的最短路径,不过,可以有一次机会可以把一条边的权值变成原来的一半。

小菜代码(双向求解,G++不能过...):

 //6890MS    41488K    2295 B    C++
/*
建图双向求解
*/
#include<iostream>
#include<queue>
#include<vector>
#include<map>
#include<string>
#define N 100005
using namespace std;
struct node{
__int64 v,w;
node(__int64 a,__int64 b){
v=a;w=b;
}
};
const __int64 inf=(_I64_MAX)/;
__int64 dis[][N];
bool vis[N];
__int64 from[*N],to[*N],weight[*N]; //记录边信息
vector<node>V[][N];
map<string,__int64>M;
__int64 n,m,sign;
__int64 start,end;
void spfa()
{
__int64 s;
if(sign==) s=start;
else s=end;
for(int i=;i<=n;i++)
dis[sign][i]=inf;
memset(vis,false,sizeof(vis));
queue<int>Q;
Q.push(s);
dis[sign][s]=;
while(!Q.empty()){
int u=Q.front();
Q.pop();
vis[u]=false;
int n0=V[sign][u].size();
for(int i=;i<n0;i++){
__int64 v=V[sign][u][i].v;
__int64 w=V[sign][u][i].w;
if(dis[sign][v]>dis[sign][u]+w){
dis[sign][v]=dis[sign][u]+w;
if(!vis[v]){
Q.push(v);
vis[v]=true;
}
}
}
}
}
int main(void)
{
string a,b;
__int64 c;
while(cin>>n>>m)
{
M.clear();
for(int i=;i<=n;i++){
V[][i].clear();
V[][i].clear();
}
int id=;
for(int i=;i<m;i++){
cin>>a>>b>>c;
if(M[a]==) M[a]=++id;
if(M[b]==) M[b]=++id;
V[][M[a]].push_back(node(M[b],c));
V[][M[b]].push_back(node(M[a],c));
from[i]=M[a];
to[i]=M[b];
weight[i]=c;
}
cin>>a>>b;
if(M[a]== || M[b]==){
puts("-1");continue;
}
start=M[a];
end=M[b]; if(start==end){
puts("");continue;
} sign=;
spfa();
if(dis[sign][end]==inf){
puts("-1");continue;
} sign=;
spfa(); __int64 ans=inf;
for(int i=;i<m;i++){
ans=min(ans,dis[][from[i]]+dis[][to[i]]+weight[i]/);
}
if(ans==inf) puts("-1");
else printf("%I64d\n",ans);
}
return ;
}

分层图思想:

 //6078MS    23744K    1906 B    C++
/* 转自:http://yomean.blog.163.com/blog/static/189420225201110282390985/ 一看就想到了分层图,不过如果用分层图,有点杀鸡用牛刀的感觉,因为只有两层。但我还是写了,最后AC了。不过网上很多人都是用建反两向边求解。
而对于分层图求最短路径问题,我们要注意的是,层与层之间的连线都是单向的,而且是从下一层指向上一层,而我们求最短路径的时候,起点总是在下一层,而终点总是在上一层,所以我们可以将经过层与层之间的特殊边的数目控制在n - 1(n是层数)。 */
#include<iostream>
#include<cstdio>
#include<string>
#include<queue>
#include<map>
#include<vector>
#define N 100005
#define inf (_I64_MAX)/2
using namespace std;
int n,m;
int head[*N],vis[*N];
int now,index,k;
__int64 dis[*N];
char name[N][];
map<string,int>M;
struct node{
int v,w,next;
}edge[*N];
void addedge(int u,int v,int w)
{
edge[index].v=v;
edge[index].w=w;
edge[index].next=head[u];
head[u]=index++;
}
struct cmp{
bool operator()(int a,int b){
return dis[a]>dis[b];
}
};
priority_queue<int,vector<int>,cmp>Q;
void init()
{
while(!Q.empty()) Q.pop();
M.erase(M.begin(),M.end());
for(int i=;i<*n;i++){
vis[i]=false;
head[i]=-;
}
now=;
index=;
}
void dij(int s,int e)
{
for(int i=;i<=*n;i++){
dis[i]=inf;vis[i]=false;
}
dis[s]=;
vis[s]=true;
Q.push(s);
while(!Q.empty()){
int u=Q.top();
Q.pop();
if(u==e){
printf("%I64d\n",dis[u]);
return;
}
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
int w=edge[i].w;
if(!vis[v] && dis[v]>dis[u]+w){
dis[v]=dis[u]+w;
Q.push(v);
}
}
}
}
int main(void)
{
string a,b;
int x,y,c;
while(cin>>n>>m)
{
init();
for(int i=;i<m;i++){
cin>>a>>b>>c;
if(M.find(a)==M.end()) M[a]=now++;
if(M.find(b)==M.end()) M[b]=now++;
addedge(M[a],M[b],c);
addedge(M[a]+n,M[b]+n,c);
addedge(M[a]+n,M[b],c/);
}
cin>>a>>b;
__int64 ans=inf;
if(M.find(a)==M.end() || M.find(b)==M.end()){
puts("-1");continue;
}
else dij(M[a]+n,M[b]);
}
return ;
}

找了一个G++能过的,不过没自己实现,略感无语

 //3765MS    28756K    2269 B    G++
//转载: http://blog.csdn.net/shoutmon/article/details/8583984
/* 思路: 1.先正向建图,以a为源点跑Dijkstra 2.再反向建图,以b为源点跑Dijkstra 3.枚举边(作为花费变为一半的边),从a到这条边的起点u使用正向建图的结果,从这条边的终点v使用反向建图的结果,然后再加上这条边边权的一半,就得到这条边花费变为一半时候的总花费。 4.将枚举结果取最小值即为最小花费 5.注意输入是字符串,可以用map */
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
#include<map> using namespace std; typedef __int64 ll; const int N=;
const int M=;
const ll inf=1LL<<; struct node
{
int to;
ll dis;
node *next;
}E[M<<],*G1[N],*G2[N],*head; int n,m,num;
ll d1[N],d2[N];
bool inq[N];
map<string,int> dict; inline void add(int a,int b,ll c,node *G[])
{
head->to=b;
head->dis=c;
head->next=G[a];
G[a]=head++;
} inline int change(char *s)
{
if(dict.count(s)) return dict[s];
else return dict[s]=num++;
} void SPFA(int s,ll d[],node *G[])
{ deque<int> Q;
Q.push_back(s);
memset(inq,false,sizeof(inq));
fill(d,d+N,inf);
d[s]=;
int to;
ll dis;
while(!Q.empty())
{
int u=Q.front();
Q.pop_front();
inq[u]=false;
for(node *p=G[u];p;p=p->next)
{
to=p->to;
dis=p->dis;
if(d[to]>d[u]+dis)
{
d[to]=d[u]+dis;
if(!Q.empty())
{
if(d[to]>d[Q.front()]) Q.push_back(to);
else Q.push_front(to);
}
else Q.push_back(to);
}
}
}
} int main()
{
char s1[],s2[];
while(~scanf("%d%d",&n,&m))
{
num=;
dict.clear();
memset(G1,NULL,sizeof(G1));
memset(G2,NULL,sizeof(G2));
head=E;
int s,t;
ll dis;
for(int i=;i<m;i++)
{
scanf("%s %s %I64d",s1,s2,&dis);
s=change(s1),t=change(s2);
add(s,t,dis,G1);
add(t,s,dis,G2);
}
scanf("%s %s",s1,s2);
s=dict[s1],t=dict[s2]; SPFA(s,d1,G1);
SPFA(t,d2,G2); ll ans=inf;
for(int i=;i<n;i++)
{
for(node *p=G1[i];p;p=p->next)
{
int j=p->to;
if(d1[i]<inf && d2[j]<inf) ans=min(ans,d1[i]+d2[j]+(p->dis)/);
}
} if(ans==inf) printf("-1\n");
else printf("%I64d\n",ans);
}
return ;
}

hdu 3499 Flight (最短路径)的更多相关文章

  1. HDU 3499 Flight spfa+dp

    Flight Time Limit : 20000/10000ms (Java/Other)   Memory Limit : 65535/65535K (Java/Other) Total Subm ...

  2. HDU - 3499 Flight 双向SPFA+枚举中间边

    Flight Recently, Shua Shua had a big quarrel with his GF. He is so upset that he decides to take a t ...

  3. hdu 3499 flight 【分层图】+【Dijkstra】

    <题目链接> 题目大意: 现在给你一些点,这些点之间存在一些有向边,每条边都有对应的边权,有一次机会能够使某条边的边权变为原来的1/2,求从起点到终点的最短距离. 解题分析: 分层图最短路 ...

  4. Flight HDU - 3499 (分层最短路)

    Recently, Shua Shua had a big quarrel with his GF. He is so upset that he decides to take a trip to ...

  5. HDU ACM 3790 最短路径问题

    最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  6. hdu 3790 (最短路径问题dijkstra)

    主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起 ...

  7. HDU 2112 HDU Today(最短路径+map)

    HDU Today Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. hdu 1688 Sightseeing (最短路径)

    Sightseeing Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. hdu DIY FLIGHT GAME (dfs)

    FLIGHT GAME Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total S ...

随机推荐

  1. Unicode编码字符 转换成汉字

    转载:http://www.chengxuyuans.com/iPhone_IOS/48128.html - (NSString *)replaceUnicode:(NSString *)unicod ...

  2. js加减乘除精确计算

    Javascript精确计算时的bug JS无法进行精确计算的bug 在做CRM,二代审核需求审核详情页面时.需要按比例(后端传类似0.8的小数)把用户输入的数字显示在不同的地方. 在做dubheIn ...

  3. 统计重复IP并排序

    #降序排列 sort ip20180623.log | uniq -c | sort -rn | more #可以输出到文件哦 sort ip20180623.log | uniq -c | sort ...

  4. Salt-ssh 自动安装salt-minion

    作用:为了不手动去安装一台一台去salt-minion,并进重复的配置 一.环境 系统环境: #cat /etc/redhat-release CentOS Linux release 7.4.170 ...

  5. PXE+DHCP+TFTP+Cobbler 无人值守安装centos 7

    Cobbler(补鞋匠)是通过将DHCP.TFTP.DNS.HTTP等服务进行集成,创建一个中央管理节点,其可以实现的功能有配置服务,创建存储库,解压缩操作系统媒介,代理或集成一个配置管理系统,控制电 ...

  6. sql xml扩展字段 查询语句

    [cms:sql query="SELECT ContentXML.value('/fields[1]/Address[1]','varchar(max)')AS valueForm FRO ...

  7. JZOJ 1738. Heatwave

    Description 给你N个点的无向连通图,图中有M条边,第j条边的长度为: d_j. 现在有 K个询问. 每个询问的格式是:A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少? I ...

  8. Dialog BLE 学习之 修改分散加载文件 (2)

    最近搞Dialog的BLE SDK,发现空间不够了,询问原厂,得知可以通过调整分散加载文件而增加空间,一方面是有42KB+8KB的硬件基础,另一方面是原有的程序限制为38KB+8KB.故顺便学习了下把 ...

  9. 20,Django contenttypes 应用

    contenttypes 是Django内置的一个应用,可以追踪项目中所有app和model的对应关系,并记录在ContentType表中. 1.创建一个项目 2.数据库迁移,生成默认表. 3.存着所 ...

  10. 4,版本控制git --忽略特殊文件

    有些时候,你必须把某些文件放到Git工作目录中,但又不能提交它们,比如保存了数据库密码的配置文件啦,等等,每次git status都会显示Untracked files ...,有强迫症的童鞋心里肯定 ...