Flight

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 2014    Accepted Submission(s): 428

Problem Description
Recently, Shua Shua had a big quarrel with his GF. He is so upset that he decides to take a trip to some other city to avoid meeting her. He will travel only by air and he can go to any city if there exists a flight and it can help him reduce the total cost to the destination. There's a problem here: Shua Shua has a special credit card which can reduce half the price of a ticket ( i.e. 100 becomes 50, 99 becomes 49. The original and reduced price are both integers. ). But he can only use it once. He has no idea which flight he should choose to use the card to make the total cost least. Can you help him?
 
Input
There are no more than 10 test cases. Subsequent test cases are separated by a blank line. 
The first line of each test case contains two integers N and M ( 2 <= N <= 100,000

0 <= M <= 500,000 ), representing the number of cities and flights. Each of the following M lines contains "X Y D" representing a flight from city X to city Y with ticket price D ( 1 <= D <= 100,000 ). Notice that not all of the cities will appear in the list! The last line contains "S E" representing the start and end city. X, Y, S, E are all strings consisting of at most 10 alphanumeric characters.

 
Output
One line for each test case the least money Shua Shua have to pay. If it's impossible for him to finish the trip, just output -1.
 
Sample Input
4 4
Harbin Beijing 500
Harbin Shanghai 1000
Beijing Chengdu 600
Shanghai Chengdu 400
Harbin Chengdu

4 0
Harbin Chengdu

 
Sample Output
800
-1

Hint

In the first sample, Shua Shua should use the card on the flight from
Beijing to Chengdu, making the route Harbin->Beijing->Chengdu have the
least total cost 800. In the second sample, there's no way for him to get to
Chengdu from Harbin, so -1 is needed.

 
Author
Edelweiss
 
Source
 
Recommend
zhouzeyong   |   We have carefully selected several similar problems for you:  3501 3502 3503 3504 3505 
 

题意:

在N个点,M条带权边的图上,查询从点s到点e的最短路径,不过,可以有一次机会可以把一条边的权值变成原来的一半。

小菜代码(双向求解,G++不能过...):

 //6890MS    41488K    2295 B    C++
/*
建图双向求解
*/
#include<iostream>
#include<queue>
#include<vector>
#include<map>
#include<string>
#define N 100005
using namespace std;
struct node{
__int64 v,w;
node(__int64 a,__int64 b){
v=a;w=b;
}
};
const __int64 inf=(_I64_MAX)/;
__int64 dis[][N];
bool vis[N];
__int64 from[*N],to[*N],weight[*N]; //记录边信息
vector<node>V[][N];
map<string,__int64>M;
__int64 n,m,sign;
__int64 start,end;
void spfa()
{
__int64 s;
if(sign==) s=start;
else s=end;
for(int i=;i<=n;i++)
dis[sign][i]=inf;
memset(vis,false,sizeof(vis));
queue<int>Q;
Q.push(s);
dis[sign][s]=;
while(!Q.empty()){
int u=Q.front();
Q.pop();
vis[u]=false;
int n0=V[sign][u].size();
for(int i=;i<n0;i++){
__int64 v=V[sign][u][i].v;
__int64 w=V[sign][u][i].w;
if(dis[sign][v]>dis[sign][u]+w){
dis[sign][v]=dis[sign][u]+w;
if(!vis[v]){
Q.push(v);
vis[v]=true;
}
}
}
}
}
int main(void)
{
string a,b;
__int64 c;
while(cin>>n>>m)
{
M.clear();
for(int i=;i<=n;i++){
V[][i].clear();
V[][i].clear();
}
int id=;
for(int i=;i<m;i++){
cin>>a>>b>>c;
if(M[a]==) M[a]=++id;
if(M[b]==) M[b]=++id;
V[][M[a]].push_back(node(M[b],c));
V[][M[b]].push_back(node(M[a],c));
from[i]=M[a];
to[i]=M[b];
weight[i]=c;
}
cin>>a>>b;
if(M[a]== || M[b]==){
puts("-1");continue;
}
start=M[a];
end=M[b]; if(start==end){
puts("");continue;
} sign=;
spfa();
if(dis[sign][end]==inf){
puts("-1");continue;
} sign=;
spfa(); __int64 ans=inf;
for(int i=;i<m;i++){
ans=min(ans,dis[][from[i]]+dis[][to[i]]+weight[i]/);
}
if(ans==inf) puts("-1");
else printf("%I64d\n",ans);
}
return ;
}

分层图思想:

 //6078MS    23744K    1906 B    C++
/* 转自:http://yomean.blog.163.com/blog/static/189420225201110282390985/ 一看就想到了分层图,不过如果用分层图,有点杀鸡用牛刀的感觉,因为只有两层。但我还是写了,最后AC了。不过网上很多人都是用建反两向边求解。
而对于分层图求最短路径问题,我们要注意的是,层与层之间的连线都是单向的,而且是从下一层指向上一层,而我们求最短路径的时候,起点总是在下一层,而终点总是在上一层,所以我们可以将经过层与层之间的特殊边的数目控制在n - 1(n是层数)。 */
#include<iostream>
#include<cstdio>
#include<string>
#include<queue>
#include<map>
#include<vector>
#define N 100005
#define inf (_I64_MAX)/2
using namespace std;
int n,m;
int head[*N],vis[*N];
int now,index,k;
__int64 dis[*N];
char name[N][];
map<string,int>M;
struct node{
int v,w,next;
}edge[*N];
void addedge(int u,int v,int w)
{
edge[index].v=v;
edge[index].w=w;
edge[index].next=head[u];
head[u]=index++;
}
struct cmp{
bool operator()(int a,int b){
return dis[a]>dis[b];
}
};
priority_queue<int,vector<int>,cmp>Q;
void init()
{
while(!Q.empty()) Q.pop();
M.erase(M.begin(),M.end());
for(int i=;i<*n;i++){
vis[i]=false;
head[i]=-;
}
now=;
index=;
}
void dij(int s,int e)
{
for(int i=;i<=*n;i++){
dis[i]=inf;vis[i]=false;
}
dis[s]=;
vis[s]=true;
Q.push(s);
while(!Q.empty()){
int u=Q.top();
Q.pop();
if(u==e){
printf("%I64d\n",dis[u]);
return;
}
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
int w=edge[i].w;
if(!vis[v] && dis[v]>dis[u]+w){
dis[v]=dis[u]+w;
Q.push(v);
}
}
}
}
int main(void)
{
string a,b;
int x,y,c;
while(cin>>n>>m)
{
init();
for(int i=;i<m;i++){
cin>>a>>b>>c;
if(M.find(a)==M.end()) M[a]=now++;
if(M.find(b)==M.end()) M[b]=now++;
addedge(M[a],M[b],c);
addedge(M[a]+n,M[b]+n,c);
addedge(M[a]+n,M[b],c/);
}
cin>>a>>b;
__int64 ans=inf;
if(M.find(a)==M.end() || M.find(b)==M.end()){
puts("-1");continue;
}
else dij(M[a]+n,M[b]);
}
return ;
}

找了一个G++能过的,不过没自己实现,略感无语

 //3765MS    28756K    2269 B    G++
//转载: http://blog.csdn.net/shoutmon/article/details/8583984
/* 思路: 1.先正向建图,以a为源点跑Dijkstra 2.再反向建图,以b为源点跑Dijkstra 3.枚举边(作为花费变为一半的边),从a到这条边的起点u使用正向建图的结果,从这条边的终点v使用反向建图的结果,然后再加上这条边边权的一半,就得到这条边花费变为一半时候的总花费。 4.将枚举结果取最小值即为最小花费 5.注意输入是字符串,可以用map */
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
#include<map> using namespace std; typedef __int64 ll; const int N=;
const int M=;
const ll inf=1LL<<; struct node
{
int to;
ll dis;
node *next;
}E[M<<],*G1[N],*G2[N],*head; int n,m,num;
ll d1[N],d2[N];
bool inq[N];
map<string,int> dict; inline void add(int a,int b,ll c,node *G[])
{
head->to=b;
head->dis=c;
head->next=G[a];
G[a]=head++;
} inline int change(char *s)
{
if(dict.count(s)) return dict[s];
else return dict[s]=num++;
} void SPFA(int s,ll d[],node *G[])
{ deque<int> Q;
Q.push_back(s);
memset(inq,false,sizeof(inq));
fill(d,d+N,inf);
d[s]=;
int to;
ll dis;
while(!Q.empty())
{
int u=Q.front();
Q.pop_front();
inq[u]=false;
for(node *p=G[u];p;p=p->next)
{
to=p->to;
dis=p->dis;
if(d[to]>d[u]+dis)
{
d[to]=d[u]+dis;
if(!Q.empty())
{
if(d[to]>d[Q.front()]) Q.push_back(to);
else Q.push_front(to);
}
else Q.push_back(to);
}
}
}
} int main()
{
char s1[],s2[];
while(~scanf("%d%d",&n,&m))
{
num=;
dict.clear();
memset(G1,NULL,sizeof(G1));
memset(G2,NULL,sizeof(G2));
head=E;
int s,t;
ll dis;
for(int i=;i<m;i++)
{
scanf("%s %s %I64d",s1,s2,&dis);
s=change(s1),t=change(s2);
add(s,t,dis,G1);
add(t,s,dis,G2);
}
scanf("%s %s",s1,s2);
s=dict[s1],t=dict[s2]; SPFA(s,d1,G1);
SPFA(t,d2,G2); ll ans=inf;
for(int i=;i<n;i++)
{
for(node *p=G1[i];p;p=p->next)
{
int j=p->to;
if(d1[i]<inf && d2[j]<inf) ans=min(ans,d1[i]+d2[j]+(p->dis)/);
}
} if(ans==inf) printf("-1\n");
else printf("%I64d\n",ans);
}
return ;
}

hdu 3499 Flight (最短路径)的更多相关文章

  1. HDU 3499 Flight spfa+dp

    Flight Time Limit : 20000/10000ms (Java/Other)   Memory Limit : 65535/65535K (Java/Other) Total Subm ...

  2. HDU - 3499 Flight 双向SPFA+枚举中间边

    Flight Recently, Shua Shua had a big quarrel with his GF. He is so upset that he decides to take a t ...

  3. hdu 3499 flight 【分层图】+【Dijkstra】

    <题目链接> 题目大意: 现在给你一些点,这些点之间存在一些有向边,每条边都有对应的边权,有一次机会能够使某条边的边权变为原来的1/2,求从起点到终点的最短距离. 解题分析: 分层图最短路 ...

  4. Flight HDU - 3499 (分层最短路)

    Recently, Shua Shua had a big quarrel with his GF. He is so upset that he decides to take a trip to ...

  5. HDU ACM 3790 最短路径问题

    最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  6. hdu 3790 (最短路径问题dijkstra)

    主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起 ...

  7. HDU 2112 HDU Today(最短路径+map)

    HDU Today Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. hdu 1688 Sightseeing (最短路径)

    Sightseeing Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. hdu DIY FLIGHT GAME (dfs)

    FLIGHT GAME Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total S ...

随机推荐

  1. java 集合 HashSet 实现随机双色球 HashSet addAll() 实现去重后合并 HashSet对象去重 复写 HashCode()方法和equals方法 ArrayList去重

    package com.swift.lianxi; import java.util.HashSet; import java.util.Random; /*训练知识点:HashSet 训练描述 双色 ...

  2. 循环语句:LOOP,WHILE和数字式循环

    一 简单循环 1 语法: LOOP      要执行的语句;      EXIT WHEN <条件语句> --条件满足,退出循环语句  END LOOP; 2 例子: DECLARE    ...

  3. 表单验证实现React-router跳转

    方法一:broserHistory.push handleSubmit(e){ e.preventDefault(); const path = '/demo'; broserHistory.push ...

  4. Color Length UVA - 1625 DP

    题目:题目链接 题意:输入两个长度分别为n和m的颜色序列,要求按顺序合并成同一个序列,即每次可以把一个序列开头的颜色放到新序列的尾部.对于每个颜色c来说,其跨度L(c)等于最大位置和最小位置之差,输出 ...

  5. 笔记-Python-language reference-5.the import system

    笔记-Python-language reference-5.the import system 前言 经常用到import,module,对其中的机制及原理有一定的了解,但没有将各种信息前后连通起来 ...

  6. spark的排序方法

    今天我们来介绍spark中排序的操作,spark的排序很简单,我们可以直接使用sortBy来进行,这个里面我们使用case clas,使用case class的好处是1.不用newjiukeyi 搞出 ...

  7. Android 工具类 异常处理类CrashHandler

    1.整体分析 1.1.源代码如下,可以直接Copy. public class CrashHandler implements Thread.UncaughtExceptionHandler { pr ...

  8. [bzoj1999][noip2007]Core树网的核

    好久没写题解了.这题不算太水就写一下题解. 话说回来,虽然不水但是挺裸.可以说题意即一半题解了. 我猜粘了题面也没有人去看的,所以直接人话题意了. 给一棵树,点数1e6,(当年noip的n当然是只有3 ...

  9. 关于 JS 模块化的最佳实践总结

    模块化开发是 JS 项目开发中的必备技能,它如同面向对象.设计模式一样,可以兼顾提升软件项目的可维护性和开发效率. 模块之间通常以全局对象维系通讯.在小游戏中,GameGlobal 是全局对象.在小程 ...

  10. Hibernate---开发环境搭建

    下载安装Hibernate 在官网http://hibernate.org/tools/上下载eclipse安装插件的文件/安装插件的地址.点击download选择JBoss Tools,选择Arti ...