本博文集群搭建没有实现Hadoop HA,详细文档在后续给出,本次只是先给出大概逻辑思路。

(一)hadoop2.x版本下载及安装

Hadoop 版本选择目前主要基于三个厂商(国外)如下所示:

  • 基于Apache厂商的最原始的hadoop版本, 所有发行版均基于这个版本进行改进。
  • 基于HortonWorks厂商的开源免费的hdp版本。
  • 基于Cloudera厂商的cdh版本,Cloudera有免费版和企业版, 企业版只有试用期。不过cdh大部分功能都是免费的。

(二)hadoop2.x分布式集群配置

1.集群资源规划设计

2.hadoop2.x分布式集群配置

1)Hadoop安装配置

先上传资源,并解压。

[kfk@bigdata-pro01 softwares]$ tar -zxf hadoop-2.6..tar.gz -C /opt/momdules/

[kfk@bigdata-pro01 softwares]$ cd ../momdules/

[kfk@bigdata-pro01 momdules]$ ll

total 

drwxr-xr-x  kfk kfk  Nov    hadoop-2.6.

drwxr-xr-x  kfk kfk  Aug     jdk1..0_60

[kfk@bigdata-pro01 momdules]$ cd hadoop-2.6./

[kfk@bigdata-pro01 hadoop-2.6.]$ ls

bin  etc  include  lib  libexec  LICENSE.txt  NOTICE.txt  README.txt  sbin  share

接下来对hadoop进行一个瘦身(删除不必要的文件,减小其大小)

[kfk@bigdata-pro01 hadoop-2.6.]$ cd share/

[kfk@bigdata-pro01 share]$ ls

doc  hadoop

[kfk@bigdata-pro01 share]$ rm -rf ./doc/

[kfk@bigdata-pro01 share]$ ls

hadoop

[kfk@bigdata-pro01 share]$ cd ..

[kfk@bigdata-pro01 hadoop-2.6.]$ ls

bin  etc  include  lib  libexec  LICENSE.txt  NOTICE.txt  README.txt  sbin  share

[kfk@bigdata-pro01 hadoop-2.6.]$ cd etc/hadoop/

[kfk@bigdata-pro01 hadoop]$ ls

capacity-scheduler.xml  hadoop-env.sh               httpfs-env.sh            kms-env.sh            mapred-env.sh               ssl-server.xml.example

configuration.xsl       hadoop-metrics2.properties  httpfs-log4j.properties  kms-log4j.properties  mapred-queues.xml.template  yarn-env.cmd

container-executor.cfg  hadoop-metrics.properties   httpfs-signature.secret  kms-site.xml          mapred-site.xml.template    yarn-env.sh

core-site.xml           hadoop-policy.xml           httpfs-site.xml          log4j.properties      slaves                      yarn-site.xml

hadoop-env.cmd          hdfs-site.xml               kms-acls.xml             mapred-env.cmd        ssl-client.xml.example

[kfk@bigdata-pro01 hadoop]$ rm -rf ./*.cmd                        //.cmd为Windows下的命令,所以不需要,可以删掉。

2)hadoop2.x分布式集群配置-HDFS

安装hdfs需要修改4个配置文件:hadoop-env.sh、core-site.xml、hdfs-site.xml和slaves

注意:为了方便和正确性的保证,以后Linux中的配置都使用外部工具Notepad++进行(连接之前请保证Windows下的Hosts文件已经添加了网络映射),连接方式如下:

注:如果出现的目录和我的不同,请双击根目录(/)。

在配置的时候再教大家一个小技巧:能够复制粘贴的尽量复制粘贴,这样能尽量避免拼写错误。比如配置hadoop-env.sh文件时可以如下操作:

然后Ctrl+Ins组合键可以实现Linux下的复制操作,粘贴操作用Shift+Ins组合键。

该文件只需配置JAVA_HOME目录即可。

  <property>

        <name>dfs.replication</name>

        <value></value>

    </property>

配置Namenode

<property>

        <name>fs.default.name</name>

        <value>hdfs://bigdata-pro01.kfk.com:9000</value>

        <description>The name of the default file system, using  port.</description>

</property>

配置Datanode

格式化Namenode

[kfk@bigdata-pro01 hadoop]$ cd ..

[kfk@bigdata-pro01 etc]$ cd ..

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/hdfs namenode –format

启动Namenode和Datanode

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/hadoop-daemon.sh start namenode

starting namenode, logging to /opt/momdules/hadoop-2.6./logs/hadoop-kfk-namenode-bigdata-pro01.kfk.com.out

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/hadoop-daemon.sh start datanode

starting datanode, logging to /opt/momdules/hadoop-2.6./logs/hadoop-kfk-datanode-bigdata-pro01.kfk.com.out

[kfk@bigdata-pro01 hadoop-2.6.]$ jps

 NameNode

 Jps

 DataNode

进入网址:http://bigdata-pro01.kfk.com:50070/dfshealth.html#tab-overview

以上结果表明配置是成功的,然后发送到其他节点。

[kfk@bigdata-pro01 momdules]$ scp -r hadoop-2.6./ bigdata-pro02.kfk.com:/opt/momdules/

The authenticity of host 'bigdata-pro02.kfk.com (192.168.86.152)' can't be established.

RSA key fingerprint is b5::fe:c4:::0c:aa:5c:f5:6f:::c5:f8:8e.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'bigdata-pro02.kfk.com,192.168.86.152' (RSA) to the list of known hosts.

kfk@bigdata-pro02.kfk.com's password:

[kfk@bigdata-pro01 momdules]$ scp -r hadoop-2.6./ bigdata-pro03.kfk.com:/opt/momdules/

然后启动两个子节点的DataNode并刷新网页看看有什么变化。

[kfk@bigdata-pro02 hadoop-2.6.]$ sbin/hadoop-daemon.sh start datanode

starting datanode, logging to /opt/momdules/hadoop-2.6./logs/hadoop-kfk-datanode-bigdata-pro02.kfk.com.out

[kfk@bigdata-pro02 hadoop-2.6.]$ jps

 DataNode

 Jps

[kfk@bigdata-pro03 ~]$ cd /opt/momdules/hadoop-2.6./

[kfk@bigdata-pro03 hadoop-2.6.]$ sbin/hadoop-daemon.sh start datanode

starting datanode, logging to /opt/momdules/hadoop-2.6./logs/hadoop-kfk-datanode-bigdata-pro03.kfk.com.out

[kfk@bigdata-pro03 hadoop-2.6.]$ jps

 DataNode

 Jps

接下来,我们在dfs上创建一个目录并上传一个文件:

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/hdfs dfs -mkdir -p /user/kfk/data/

// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/hdfs dfs -put /opt/momdules/hadoop-2.6./etc/hadoop/core-site.xml /user/kfk/data

创建和上传都成功!

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/hdfs dfs -text /user/kfk/data/core-site.xml

// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!--

  Licensed under the Apache License, Version 2.0 (the "License");

  you may not use this file except in compliance with the License.

  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software

  distributed under the License is distributed on an "AS IS" BASIS,

  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

  See the License for the specific language governing permissions and

  limitations under the License. See accompanying LICENSE file.

-->

<!-- Put site-specific property overrides in this file. -->

<configuration>

    <property>

        <name>fs.default.name</name>

        <value>hdfs://bigdata-pro01.kfk.com:9000</value>

        <description>The name of the default file system, using  port.</description>

    </property>

</configuration>

文件内容也是完全一致的!

3)hadoop2.x分布式集群配置-YARN

安装yarn需要修改4个配置文件:yarn-env.sh、mapred-env.sh、yarn-site.xml和mapred-site.xml

<property>

        <name>mapreduce.framework.name</name>

        <value>yarn</value>

    </property>

    <property>

        <name>mapreduce.jobhistory.address</name>

        <value>bigdata-pro01.kfk.com:</value>

    </property>

    <property>

        <name>mapreduce.jobhistory.webapp.address</name>

        <value>bigdata-pro01.kfk.com:</value>

</property>

<property>

        <name>yarn.nodemanager.aux-services</name>

        <value>mapreduce_shuffle</value>

    </property>

   <property>

        <name>yarn.resourcemanager.hostname</name>

        <value>bigdata-pro01.kfk.com</value>

    </property>

   <property>

        <name>yarn.log-aggregation-enable</name>

        <value>true</value>

    </property>

   <property>

        <name>yarn.log-aggregation.retain-seconds</name>

        <value></value>

    </property>

(三)分发到其他各个机器节点

hadoop相关配置在第一个节点配置好之后,可以通过脚本命令分发给另外两个节点即可,具体操作如下所示。

#将安装包分发给第二个节点

[kfk@bigdata-pro01 hadoop]$ scp -r ./* kfk@bigdata-pro02.kfk.com:/opt/momdules/hadoop-2.6.0/etc/hadoop/

#将安装包分发给第三个节点

[kfk@bigdata-pro01 hadoop]$ scp -r ./* kfk@bigdata-pro03.kfk.com:/opt/momdules/hadoop-2.6.0/etc/hadoop/

(四)HDFS启动集群运行测试

[kfk@bigdata-pro01 hadoop]$ cd  ..

[kfk@bigdata-pro01 etc]$ cd ..

[kfk@bigdata-pro01 hadoop-2.6.]$ cd ..

[kfk@bigdata-pro01 momdules]$ cd ..

[kfk@bigdata-pro01 opt]$ cd datas/

[kfk@bigdata-pro01 datas]$ touch wc.input

[kfk@bigdata-pro01 datas]$ vi wc.input

  hadoop hive

  hive spark

  hbase java

[kfk@bigdata-pro01 datas]$ cd ../momdules/hadoop-2.6./

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/hdfs dfs -put /opt/datas/wc.input /user/kfk/data

// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

hdfs相关配置好之后,可以启动resourcemanager和nodemanager。

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/yarn-daemon.sh resourcemanager

Usage: yarn-daemon.sh [--config <conf-dir>] [--hosts hostlistfile] (start|stop) <yarn-command>

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/yarn-daemon.sh start resourcemanager

starting resourcemanager, logging to /opt/momdules/hadoop-2.6./logs/yarn-kfk-resourcemanager-bigdata-pro01.kfk.com.out

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/yarn-daemon.sh start nodemanager

starting nodemanager, logging to /opt/momdules/hadoop-2.6./logs/yarn-kfk-nodemanager-bigdata-pro01.kfk.com.out

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/mr-jobhistory-daemon.sh start historyserver

starting historyserver, logging to /opt/momdules/hadoop-2.6./logs/mapred-kfk-historyserver-bigdata-pro01.kfk.com.out

[kfk@bigdata-pro01 hadoop-2.6.]$ jps

 NameNode

 NodeManager

 Jps

 ResourceManager

 DataNode

 JobHistoryServer

[kfk@bigdata-pro02 hadoop-2.6.]$ sbin/yarn-daemon.sh start nodemanager

starting nodemanager, logging to /opt/momdules/hadoop-2.6./logs/yarn-kfk-nodemanager-bigdata-pro02.kfk.com.out

[kfk@bigdata-pro02 hadoop-2.6.]$ jps

 NodeManager

 DataNode

 Jps

[kfk@bigdata-pro03 hadoop-2.6.]$ sbin/yarn-daemon.sh start nodemanager

starting nodemanager, logging to /opt/momdules/hadoop-2.6./logs/yarn-kfk-nodemanager-bigdata-pro03.kfk.com.out

[kfk@bigdata-pro03 hadoop-2.6.]$ jps

 Jps

 DataNode

 NodeManager

进入网址:http://bigdata-pro01.kfk.com:8088/cluster/nodes

接下来配置一下DataNode的日志目录。

<property>

        <name>dfs.permissions.enable</name>

        <value>false</value>

</property>

<property>

        <name>hadoop.http.staticuser.user</name>

        <value>kfk</value>

    </property>

   <property>

        <name>hadoop.tmp.dir</name>

        <value>/opt/momdules/hadoop-2.6./data/tmp</value>

    </property>

创建目录:

[kfk@bigdata-pro01 hadoop-2.6.]$ mkdir -p data/tmp

[kfk@bigdata-pro01 hadoop-2.6.]$ cd data/tmp/

[kfk@bigdata-pro01 tmp]$ pwd

/opt/momdules/hadoop-2.6./data/tmp

然后分发配置到其他节点:

由于修改东西并且新建了路径,为了安全起见,先删掉两个节点的hadoop文件夹,全部重发一次吧。

[kfk@bigdata-pro02 momdules]$ rm -rf hadoop-2.6./                                                     //注意删除的是02和03节点,别删错了。

然后分发:

scp -r ./hadoop-2.6./ kfk@bigdata-pro02.kfk.com:/opt/momdules/

scp -r ./hadoop-2.6./ kfk@bigdata-pro03.kfk.com:/opt/momdules/

格式化NameNode

格式化之前要先停掉所有服务:

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/yarn-daemon.sh stop resourcemanager

stopping resourcemanager

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/yarn-daemon.sh stop nodemanager

stopping nodemanager

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/mr-jobhistory-daemon.sh stop historyserver

stopping historyserver

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/hadoop-daemon.sh stop namenode

stopping namenode

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/hadoop-daemon.sh stop datanode

stopping datanode

[kfk@bigdata-pro01 hadoop-2.6.]$ jps

 Jps

格式化:

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/hdfs namenode -format

启动各个节点机器服务

1)启动NameNode命令:

sbin/hadoop-daemon.sh start namenode(01节点)

2) 启动DataNode命令:

sbin/hadoop-daemon.sh start datanode(//03节点)

格式化Namenode之后之前建立的路径也就没有了,所有我们要重新创建。

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/hdfs dfs -mkdir -p /user/kfk/data

3)启动ResourceManager命令:

sbin/yarn-daemon.sh start resourcemanager(01节点)

4)启动NodeManager命令:

sbin/yarn-daemon.sh start nodemanager(//03节点)

5)启动log日志命令:

sbin/mr-jobhistory-daemon.sh start historyserver(01节点)

(五)YARN集群运行MapReduce程序测试

前面hdfs和yarn都启动起来之后,可以通过运行WordCount程序检测一下集群是否能run起来。

重新上传测试文件:

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/hdfs dfs -put /opt/datas/wc.input /user/kfk/data/

然后创建一个输出目录:

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/hdfs dfs -mkdir -p /user/kfk/data/output/

使用集群自带的WordCount程序执行命令:

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6..jar wordcount /user/kfk/data/wc.input /user/kfk/data/output

// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

// :: INFO client.RMProxy: Connecting to ResourceManager at bigdata-pro01.kfk.com/192.168.86.151:

org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://bigdata-pro01.kfk.com:9000/user/kfk/data/output already exists

    at org.apache.hadoop.mapreduce.lib.output.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:)

    at org.apache.hadoop.mapreduce.JobSubmitter.checkSpecs(JobSubmitter.java:)

    at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:)

    at org.apache.hadoop.mapreduce.Job$.run(Job.java:)

    at org.apache.hadoop.mapreduce.Job$.run(Job.java:)

    at java.security.AccessController.doPrivileged(Native Method)

    at javax.security.auth.Subject.doAs(Subject.java:)

    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:)

    at org.apache.hadoop.mapreduce.Job.submit(Job.java:)

    at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:)

    at org.apache.hadoop.examples.WordCount.main(WordCount.java:)

    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)

    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)

    at java.lang.reflect.Method.invoke(Method.java:)

    at org.apache.hadoop.util.ProgramDriver$ProgramDescription.invoke(ProgramDriver.java:)

    at org.apache.hadoop.util.ProgramDriver.run(ProgramDriver.java:)

    at org.apache.hadoop.examples.ExampleDriver.main(ExampleDriver.java:)

    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)

    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)

    at java.lang.reflect.Method.invoke(Method.java:)

    at org.apache.hadoop.util.RunJar.run(RunJar.java:)

    at org.apache.hadoop.util.RunJar.main(RunJar.java:)

运行报错。原因是输出目录已经存在,而MapReduce执行时会检测输出目录是否存在,不存在则自动创建并正常执行;否则报错。所以我们重新运行,在输出目录后再追加一个目录即可。

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6..jar wordcount /user/kfk/data/wc.input /user/kfk/data/output/ 

点击History可以查看日志

这样就能很方便地查看日志,而不用在命令行进hadoop的logs/目录下去查看了。我们查看一下运行结果:

[kfk@bigdata-pro01 hadoop-2.6.]$ bin/hdfs dfs -text /user/kfk/data/output//par*

// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

hadoop 

hbase  

hive   

java   

spark   

很明显结果是正确的(上图中黄色为行号,而非文件内容)!

(六)ssh无秘钥登录

在集群搭建的过程中,需要不同节点分发文件,那么节点间分发文件每次都需要输入密码,比较麻烦。另外在hadoop 集群启动过程中,也需要使用批量脚本统一启动各个节点服务,此时也需要节点之间实现无秘钥登录。具体操作步骤如下所示:

1.主节点上创建 .ssh 目录,然后生成公钥文件id_rsa.pub和私钥文件[kfk@bigdata-pro01 datas]$ cd

[kfk@bigdata-pro01 ~]$ cd .ssh

[kfk@bigdata-pro01 .ssh]$ ls

known_hosts

[kfk@bigdata-pro01 .ssh]$ cat known_hosts

bigdata-pro02.kfk.com,192.168.86.152 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAsHpzF1vSSqZPIbTKrhsxKGqofgngHbm5MdXItaSEJ8JemIuWrMo5++0g3QG/m/DRW8KqjXhnBO819tNIqmVNeT+0cH7it9Nosz1NWfwvXyNy+lbxdjfqSs+DvMh0w5/ZoiXVdqWmPAh2u+CP4BKbHS4VKRNoZk42B++gzXxN6Gt1kxNemLsLw6251IzmsX+dVr8iH493mXRwE9dv069uKoA0HVwn6FL51D8c1H1v1smD/EzUsL72TUknz8DV43iawIBDMSw4GQJFoZtm2ogpCuIhBfLwTfl+5yyzjY8QdwH5sDiKFlPX476M+A1s+mneyQtaaRwORIiOvs7TgtSTw==

bigdata-pro03.kfk.com,192.168.86.153 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAsHpzF1vSSqZPIbTKrhsxKGqofgngHbm5MdXItaSEJ8JemIuWrMo5++0g3QG/m/DRW8KqjXhnBO819tNIqmVNeT+0cH7it9Nosz1NWfwvXyNy+lbxdjfqSs+DvMh0w5/ZoiXVdqWmPAh2u+CP4BKbHS4VKRNoZk42B++gzXxN6Gt1kxNemLsLw6251IzmsX+dVr8iH493mXRwE9dv069uKoA0HVwn6FL51D8c1H1v1smD/EzUsL72TUknz8DV43iawIBDMSw4GQJFoZtm2ogpCuIhBfLwTfl+5yyzjY8QdwH5sDiKFlPX476M+A1s+mneyQtaaRwORIiOvs7TgtSTw==

[kfk@bigdata-pro01 .ssh]$ rm -f known_hosts   //保证.ssh目录是干净的

[kfk@bigdata-pro01 .ssh]$ ls

[kfk@bigdata-pro01 .ssh]$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/kfk/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/kfk/.ssh/id_rsa.

Your public key has been saved in /home/kfk/.ssh/id_rsa.pub.

The key fingerprint is:

6f:a2::da:9d:::e5:::a1::0c:7a:8d:b8 kfk@bigdata-pro01.kfk.com

The key's randomart image is:

+--[ RSA ]----+

|                 |

|          .   .  |

|         o = . . |

|        o o * +  |

|        So   B . |

|        E.. o o  |

|     .  . oo .   |

|   ....o.o.      |

|  ... +o .       |

+-----------------+

2.拷贝公钥到各个机器

ssh-copy-id bigdata-pro1.kfk.com

ssh-copy-id bigdata-pro2.kfk.com

ssh-copy-id bigdata-pro3.kfk.com

3.测试ssh连接

ssh bigdata-pro1.kfk.com

ssh bigdata-pro2.kfk.com

ssh bigdata-pro3.kfk.com

[kfk@bigdata-pro01 .ssh]$ ssh bigdata-pro02.kfk.com

Last login: Tue Oct  ::  from 192.168.86.1

4.测试hdfs

ssh无秘钥登录做好之后,可以在主节点通过一键启动/停止命令,启动/停止hdfs各个节点的服务,具体操作如下所示:

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/stop-dfs.sh

// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

Stopping namenodes on [bigdata-pro01.kfk.com]

bigdata-pro01.kfk.com: stopping namenode

bigdata-pro03.kfk.com: stopping datanode

bigdata-pro01.kfk.com: stopping datanode

bigdata-pro02.kfk.com: stopping datanode

Stopping secondary namenodes [0.0.0.0]

The authenticity of host '0.0.0.0 (0.0.0.0)' can't be established.

RSA key fingerprint is b5::fe:c4:::0c:aa:5c:f5:6f:::c5:f8:8e.

Are you sure you want to continue connecting (yes/no)? yes

0.0.0.0: Warning: Permanently added '0.0.0.0' (RSA) to the list of known hosts.

0.0.0.0: no secondarynamenode to stop

// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

[kfk@bigdata-pro01 hadoop-2.6.]$ sbin/stop-yarn.sh

stopping yarn daemons

stopping resourcemanager

bigdata-pro03.kfk.com: stopping nodemanager

bigdata-pro02.kfk.com: stopping nodemanager

bigdata-pro01.kfk.com: stopping nodemanager

no proxyserver to stop

如果yarn和hdfs主节点共用,配置一个节点即可。否则,yarn也需要单独配置ssh无秘钥登录。

(七)配置集群内机器时间同步(使用Linux ntp进行)

参考博文:https://www.cnblogs.com/zimo-jing/p/8892697.html

注:在三个节点上都要进行操作,还有最后一个命令使用sudo。


以上就是博主为大家介绍的这一板块的主要内容,这都是博主自己的学习过程,希望能给大家带来一定的指导作用,有用的还望大家点个支持,如果对你没用也望包涵,有错误烦请指出。如有期待可关注博主以第一时间获取更新哦,谢谢!同时也欢迎转载,但必须在博文明显位置标注原文地址,解释权归博主所有!

Hadoop2.X分布式集群部署的更多相关文章

  1. 新闻实时分析系统-Hadoop2.X分布式集群部署

    (一)hadoop2.x版本下载及安装 Hadoop 版本选择目前主要基于三个厂商(国外)如下所示: 1.基于Apache厂商的最原始的hadoop版本, 所有发行版均基于这个版本进行改进. 2.基于 ...

  2. 新闻网大数据实时分析可视化系统项目——3、Hadoop2.X分布式集群部署

    (一)hadoop2.x版本下载及安装 Hadoop 版本选择目前主要基于三个厂商(国外)如下所示: 1.基于Apache厂商的最原始的hadoop版本, 所有发行版均基于这个版本进行改进. 2.基于 ...

  3. 超详细从零记录Hadoop2.7.3完全分布式集群部署过程

    超详细从零记录Ubuntu16.04.1 3台服务器上Hadoop2.7.3完全分布式集群部署过程.包含,Ubuntu服务器创建.远程工具连接配置.Ubuntu服务器配置.Hadoop文件配置.Had ...

  4. Hadoop(HA)分布式集群部署

    Hadoop(HA)分布式集群部署和单节点namenode部署其实一样,只是配置文件的不同罢了. 这篇就讲解hadoop双namenode的部署,实现高可用. 系统环境: OS: CentOS 6.8 ...

  5. Hadoop分布式集群部署(单namenode节点)

    Hadoop分布式集群部署 系统系统环境: OS: CentOS 6.8 内存:2G CPU:1核 Software:jdk-8u151-linux-x64.rpm hadoop-2.7.4.tar. ...

  6. Hadoop教程(五)Hadoop分布式集群部署安装

    Hadoop教程(五)Hadoop分布式集群部署安装 1 Hadoop分布式集群部署安装 在hadoop2.0中通常由两个NameNode组成,一个处于active状态,还有一个处于standby状态 ...

  7. 基于winserver的Apollo配置中心分布式&集群部署实践(正确部署姿势)

    基于winserver的Apollo配置中心分布式&集群部署实践(正确部署姿势)   前言 前几天对Apollo配置中心的demo进行一个部署试用,现公司已决定使用,这两天进行分布式部署的时候 ...

  8. solr 集群(SolrCloud 分布式集群部署步骤)

    SolrCloud 分布式集群部署步骤 安装软件包准备 apache-tomcat-7.0.54 jdk1.7 solr-4.8.1 zookeeper-3.4.5 注:以上软件都是基于 Linux ...

  9. SolrCloud 分布式集群部署步骤

    https://segmentfault.com/a/1190000000595712 SolrCloud 分布式集群部署步骤 solr solrcloud zookeeper apache-tomc ...

随机推荐

  1. 输入框获取焦点后placeholder文字消失、修改placeholder的样式

    输入框获取焦点后placeholder文字消失: <input placeholder='' onfocus="this.placeholder=''" onblur=&qu ...

  2. github分支管理

    一. 需要创建的分支 1.master 主分支 2.dev 开发分支 3.bug 修改bug分支 4.release 预发布分支 二.分支使用 1.在master上创建dev,bug,release分 ...

  3. Chrom去掉"未选择任何文件"

    <style> input[type="file"] { color: transparent; } </style>

  4. 数据加密实战之记住密码、自动登录和加密保存数据运用DES和MD5混合使用

    MD5的简介:MD5即Message-Digest Algorithm 5(信息-摘要算法5),用于确保信息传输完整一致.是计算机广泛使用的杂凑算法之一(又译摘要算法.哈希算法),主流编程语言普遍已有 ...

  5. framwork maven的配置及使用

    maven的配置及使用 一.什么是maven: 我们在开发项目的过程中,会使用一些开源框架.第三方的工具等等,这些都是以jar包的方式被项目所引用,并且有些jar包还会依赖其他的jar包,我们同样需要 ...

  6. poj1195(二维树状数组)

    题目链接:https://vjudge.net/problem/POJ-1195 题意:有s*s的矩阵,初始化为全0,有两种操作,单点修改(x,y)的值,区间查询(x,y)的值(l<=x< ...

  7. 简单配置webpack4 + vue

    1.创建webpack4-vue文件夹 mkdir webpack4-vue && cd webpack4-vue 2.初始化npm npm init -y 3.安装相关依赖 npm ...

  8. 资深专家深度剖析Kubernetes API Server第3章(共3章)

    在本系列的前两部分中我们介绍了API Server的总体流程,以及API对象如何存储到etcd中.在本文中我们将探讨如何扩展API资源. 在一开始的时候,扩展API资源的唯一方法是扩展相关API源代码 ...

  9. Java内存区域与内存溢出异常---对象的内存布局和对象的访问定位

    对象的内存布局   在HotSpot虚拟机中,对象在内存中的存储布局可以划分为三个区域:对象头,实例数据,对齐填充.   对象头包括两部分信息:第一部分用于存储对象自身的运行时数据,如哈希码,GC分代 ...

  10. 设置linux服务器文件夹权限

    最近搞的网站一上传图片,就报500错误.经排查是服务器文件夹权限设置问题. 使用命令: chmod o+rwx avatar 即可改变文件夹权限设置.