B. Knights of a Polygonal Table
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Unlike Knights of a Round Table, Knights of a Polygonal Table deprived of nobility and happy to kill each other. But each knight has some power and a knight can kill another knight if and only if his power is greater than the power of victim. However, even such a knight will torment his conscience, so he can kill no more than kk other knights. Also, each knight has some number of coins. After a kill, a knight can pick up all victim's coins.

Now each knight ponders: how many coins he can have if only he kills other knights?

You should answer this question for each knight.

Input

The first line contains two integers nn and kk (1≤n≤105,0≤k≤min(n−1,10))(1≤n≤105,0≤k≤min(n−1,10)) — the number of knights and the number kk from the statement.

The second line contains nn integers p1,p2,…,pnp1,p2,…,pn (1≤pi≤109)(1≤pi≤109) — powers of the knights. All pipi are distinct.

The third line contains nn integers c1,c2,…,cnc1,c2,…,cn (0≤ci≤109)(0≤ci≤109) — the number of coins each knight has.

Output

Print nn integers — the maximum number of coins each knight can have it only he kills other knights.

Examples
input

Copy
4 2
4 5 9 7
1 2 11 33
output

Copy
1 3 46 36 
input

Copy
5 1
1 2 3 4 5
1 2 3 4 5
output

Copy
1 3 5 7 9 
input

Copy
1 0
2
3
output

Copy
3 
Note

Consider the first example.

  • The first knight is the weakest, so he can't kill anyone. That leaves him with the only coin he initially has.
  • The second knight can kill the first knight and add his coin to his own two.
  • The third knight is the strongest, but he can't kill more than k=2k=2 other knights. It is optimal to kill the second and the fourth knights: 2+11+33=462+11+33=46.
  • The fourth knight should kill the first and the second knights: 33+1+2=3633+1+2=36.

In the second example the first knight can't kill anyone, while all the others should kill the one with the index less by one than their own.

In the third example there is only one knight, so he can't kill anyone.

http://codeforces.com/problemset/problem/994/B

题意:给你n个人,每个人都有一个力量值和一些金钱

现在假设一个人可以攻击任意人,如果攻击力量值比他低的人

就可以得到那个人的金钱,输出每个人攻击最多k个人后最多可以有

多少金钱.

这个题是真的坑

最后FST了,55555,比赛的时候没有注意到一个小知识点

求k个人可以得到最多的钱的时候如果是用二叉平衡树的set容器的话

如果容器中有重复的元素的话会自动去重

multiset集合容器:

------ 和set的区别:set容器中所有的元素必须独一无二,而multiset容器中元素可以重复

但是由于不太会用multiset 所以使用vector,每次都排个序,一样的结果

思路在代码中

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+;
int n,k;
struct node {
int p,id;
} a[maxn];
bool cmp(node a,node b) {
return a.p<b.p;
}
vector<long long> v;
long long c[maxn];
long long ans[maxn];
int main() {
ios::sync_with_stdio(false);
cin>>n>>k;
for(int i=; i<n; i++) {
cin>>a[i].p;
a[i].id=i;
}
for(int i=; i<n; i++) {
cin>>c[i];
}
//k=0时特殊处理
if(k==) {
for(int i=; i<n; i++) {
printf("%d ",c[i]);
}
printf("\n");
return ;
} else {
//对力量值排序
sort(a,a+n,cmp);
ans[a[].id]=;
long long sumk=;//前k大和
for(int i=; i<n; i++) {
if(v.size()<k) {
/在k个数之前时 加上前面这些数的cost
v.push_back(c[a[i-].id]);
sumk+=c[a[i-].id];//前i个数的和
} else if(c[a[i-].id]>v[]) {
//前面数中最大的k个数的和
sumk+=c[a[i-].id]-v[];//更新最大值
v[]=c[a[i-].id];//更新第k大值
}
sort(v.begin(),v.end());//对于k个数重新排序
ans[a[i].id]=sumk;
}
for(int i=; i<n; i++) {
printf("%lld ",ans[i]+c[i]);
}
printf("\n"); }
return ;
}

补上multiset的做法

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5+;
int p[maxn],coin[maxn]; bool cmp(int x,int y){
return p[x]<p[y];
} ll ans[maxn];
int id[maxn]; int main(){
ios::sync_with_stdio(false);
cin.tie();
int n,k;
while(cin>>n>>k){
for(int i=;i<n;i++){
cin>>p[i];
}
for(int i=;i<n;i++){
cin>>coin[i];
}
for(int i=;i<n;i++){
ans[i]=coin[i];
id[i]=i;
}
sort(id,id+n,cmp);
multiset<int> s;
multiset<int>::iterator it;
for(int i=;i<n;i++){
int j=;
it=s.end();
if(s.size()!=){
for(it--;j<k;j++,it--){
ans[id[i]]+=*it;
if(it==s.begin()) break;
}
}
s.insert(coin[id[i]]);
}
for(int i=;i<n;i++){
cout<<ans[i]<<" ";
}
cout<<endl;
}
}

code forces 994B的更多相关文章

  1. 思维题--code forces round# 551 div.2

    思维题--code forces round# 551 div.2 题目 D. Serval and Rooted Tree time limit per test 2 seconds memory ...

  2. Code Forces 796C Bank Hacking(贪心)

    Code Forces 796C Bank Hacking 题目大意 给一棵树,有\(n\)个点,\(n-1\)条边,现在让你决策出一个点作为起点,去掉这个点,然后这个点连接的所有点权值+=1,然后再 ...

  3. Code Forces 833 A The Meaningless Game(思维,数学)

    Code Forces 833 A The Meaningless Game 题目大意 有两个人玩游戏,每轮给出一个自然数k,赢得人乘k^2,输得人乘k,给出最后两个人的分数,问两个人能否达到这个分数 ...

  4. Code Forces 543A Writing Code

    题目描述 Programmers working on a large project have just received a task to write exactly mm lines of c ...

  5. code forces 383 Arpa's loud Owf and Mehrdad's evil plan(有向图最小环)

    Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 megab ...

  6. code forces 382 D Taxes(数论--哥德巴赫猜想)

    Taxes time limit per test 2 seconds memory limit per test 256 megabytes input standard input output ...

  7. code forces Watermelon

    /* * Watermelon.cpp * * Created on: 2013-10-8 * Author: wangzhu */ /** * 若n是偶数,且大于2,则输出YES, * 否则输出NO ...

  8. code forces Jeff and Periods

    /* * c.cpp * * Created on: 2013-10-7 * Author: wangzhu */ #include<cstdio> #include<iostrea ...

  9. Code Forces Gym 100971D Laying Cables(单调栈)

    D - Laying Cables Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u ...

随机推荐

  1. Linux下配置npm存放路径,解决权限问题

    1.打开cmd命令行,查看当前配置 输入 npm config ls 先看一下当前npm的配置环境,由于我已经修改过,所以可以看到修改后的路径 2.修改路径 这里需要修改两个路径,module路径和c ...

  2. Mysql_Binary_Install_Scripts(采用二进制方式安装)

    1.1    MYSQL实现代码 #!/bin/bash ######################################## #auth:wolf_dreams #time:2018-1 ...

  3. Linq to SQL八大子句

    查询数据库中的数据 from- in子句 指定查询操作的数据源和范围变量 select子句 指定查询结果的类型和表现形式 where子句 筛选元素的逻辑条件,一般由逻辑运算符组成 group- by子 ...

  4. 裸机——SD卡

    1.首先要对SD卡有个基础知识 (1) SD = nandflash + 主控IC. 主控IC负责了校验和坏块管理,所以SoC只需要依照时序就可以和SD卡上的主控IC进行数据交换等操作. (2) SD ...

  5. [Codeforces958A2]Death Stars (medium)(字符串+hash)

    Description 题目链接 Solution 这里用类似hash的方法将判断2个矩阵是否相同的时间降为O(m),总时间复杂度为O(m3) Code #include <cstdio> ...

  6. L2-032 彩虹瓶 (25 分)

    L2-032 彩虹瓶 (25 分)   彩虹瓶的制作过程(并不)是这样的:先把一大批空瓶铺放在装填场地上,然后按照一定的顺序将每种颜色的小球均匀撒到这批瓶子里. 假设彩虹瓶里要按顺序装 N 种颜色的小 ...

  7. 笔记-reactor pattern

    笔记-reactor pattern 1.      reactor模式 1.1.    什么是reactor模式 The reactor design pattern is an event han ...

  8. Nginx 高级配置

    nginx官方网站:http://nginx.org/ 1.  Nginx连接后端的方式:反向代理(proxy_pass).直连fastcgi(fastcgi_pass) 例子: fastcgi_pa ...

  9. Windows GitLab使用全过程

    1.首先安装Git 1.1.下载网站: https://git-for-windows.github.io/ 1.2.安装Git参考网站 http://blog.csdn.net/u012614287 ...

  10. 4G来临,短视频社交分享应用或井喷

    因为工作的原因,接触短视频社交应用的时间相对较多,不管是自家的微视,还是别人家的Vine.玩拍.秒拍等,都有体验过.随着时间的推移,我愈发感受到有一股似曾相识的势能正在某个地方慢慢积聚,直到今天我才猛 ...