题目描述

给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29

输入输出格式

输入格式:

两个整数n k

输出格式:

答案

输入输出样例

输入样例#1: 复制

10 5
输出样例#1: 复制

29

说明

30%: n,k <= 1000

60%: n,k <= 10^6

100% n,k <= 10^9

代码:

 #include"bits/stdc++.h"
#define db double
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
//#define rep(i, x, y) for(int i=x;i<=y;i++)
#define rep(i,n) for(int i=0;i<n;i++)
const int N = 1e5+;
const int mod = 1e9 + ;
const int MOD = mod - ;
const int inf = 0x3f3f3f3f;
const db PI = acos(-1.0);
const db eps = 1e-;
using namespace std;
ll n,k;
ll f[N];
int main()
{
cl(n),cl(k);
ll ans=n*k;
for(ll i=,j;i<=n;i=j+){
if(!(k/i)) j=n;
else j=min(k/(k/i),n);
ans-=(k/i)*(j-i+)*(j+i)/;
}
pl(ans);
return ;
}

[CQOI2007]余数求和 (分块+数学的更多相关文章

  1. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  2. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  3. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  4. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  5. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

  6. 题解 P2261【[CQOI2007]余数求和】

    P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...

  7. BZOJ_1257_ [CQOI2007]余数之和sum_数学

    BZOJ_1257_ [CQOI2007]余数之和sum_数学 题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 分 ...

  8. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  9. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

随机推荐

  1. intellijidea课程 intellijidea神器使用技巧2-2 精准搜索

    高效定位: 1 类: 类的跳转: Ctrl shift n ==> 查询类名 Ctrl shift n n ==> jar包中的类 2 文件: Ctrl shift shift n ==& ...

  2. 顺序链表(C++)

    顺序表结构 struct Sq_list { ]; int length; }; 创建并初始化顺序表 int Init_list(Sq_list *L) { L->length = ; ; } ...

  3. position的参考基准

    static(静态):position默认的样式:占据标准流的位置, 它会忽略top.bottom.left . right 的设置 relative(相对): 占据标准流的位置:可将其移至相对于其正 ...

  4. ArcGIS Engine中的Symbols详解(转)

    本文来源:http://blog.csdn.net/mengdong_zy/article/details/8980842 原文如下: Symbols Symbol level drawing Joi ...

  5. zookeeper的几种使用场景

    1.数据的发布与订阅 通过发布与订阅实现配置的信息的统一管理,主要采用zk节点可以存储数据的特性,我们可以将一些配置信息存放到某一节点上,订阅这个节点的服务就可以动态的获取这个节点的数据.在应用启动的 ...

  6. ASP.NET Core - 各项配置

    之前搭建好了各项开发环境,现在来说说ASP.NET Core的各项配置.项目结构.以及在请求管道中挂载的各式各样的中间件.今天先来探讨探讨其各项配置及其项目结构   ASP.NET Core和上一代F ...

  7. IOS 设置ipone状态栏的样式

    /** 控制状态栏的样式 */ -(UIStatusBarStyle)preferredStatusBarStyle { //白色 return UIStatusBarStyleLightConten ...

  8. 数据库连接-ADO.NET

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/huo065000/article/details/25830291       非常早就知道了ADO ...

  9. 【LOJ6045】「雅礼集训 2017 Day8」价(网络流)

    点此看题面 大致题意: 有\(n\)种药,每种药有一个权值,且使用了若干种药材.让你选择若干种药,使得药的数量与所使用的药材并集大小相等,求最小权值总和. 网络流 \(hl666\):这种数据范围,一 ...

  10. Linux空间PHP开发环境小白教程(LAMP)

    租了一个云服务器, 但是只有linux系统,没有php开发环境, 只好自己摸索着一步一步安装啦. 本教程来自自学IT创E老师的Linux教程,想详细了解的可以去论坛找. 一.使用PUTTY登录服务器 ...