[CQOI2007]余数求和 (分块+数学
题目描述
给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29
输入输出格式
输入格式:
两个整数n k
输出格式:
答案
输入输出样例
说明
30%: n,k <= 1000
60%: n,k <= 10^6
100% n,k <= 10^9

代码:
#include"bits/stdc++.h"
#define db double
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
//#define rep(i, x, y) for(int i=x;i<=y;i++)
#define rep(i,n) for(int i=0;i<n;i++)
const int N = 1e5+;
const int mod = 1e9 + ;
const int MOD = mod - ;
const int inf = 0x3f3f3f3f;
const db PI = acos(-1.0);
const db eps = 1e-;
using namespace std;
ll n,k;
ll f[N];
int main()
{
cl(n),cl(k);
ll ans=n*k;
for(ll i=,j;i<=n;i=j+){
if(!(k/i)) j=n;
else j=min(k/(k/i),n);
ans-=(k/i)*(j-i+)*(j+i)/;
}
pl(ans);
return ;
}
[CQOI2007]余数求和 (分块+数学的更多相关文章
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- [Luogu 2261] CQOI2007 余数求和
[Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...
- 题解 P2261【[CQOI2007]余数求和】
P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...
- BZOJ_1257_ [CQOI2007]余数之和sum_数学
BZOJ_1257_ [CQOI2007]余数之和sum_数学 题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 分 ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
随机推荐
- IDEA插件JRebel安装配置与破解激活详细教程(转)
JRebel 介绍 IDEA上原生是不支持热部署的,一般更新了 Java 文件后要手动重启 Tomcat 服务器,才能生效,浪费不少生命啊.目前对于idea热部署最好的解决方案就是安装JRebel插件 ...
- 自写Jq动画载入插件
在写网站的时候,有一些dom第一次进入屏幕时需要加一个动画进入效果,如下图 于是,自己就研究下,要是实现gif图中左图效果大致原理就是首先将dom放在他的左侧,并将他的透明度(opacity)设置为0 ...
- http头部如何对缓存的控制
文章自于我的个人博客 使用缓存的目的就是在于减少计算,IO,网络等时间,可以快速的返回,特别是流量比较大的时候,可以节约很多服务器带宽和压力. 一个请求从缓存的方面来说,有三个过程. 本地检查缓存是否 ...
- Springboot开源项目实例整理
https://www.imooc.com/article/67664 ---------------------------------------------------------------- ...
- 测试驱动开发(TDD)及测试框架Mocha.js入门学习
组里马上要转变开发模式,由传统的开发模式(Developer开发,QA测试),转变为尝试TDD(Test-driven development,测试驱动开发)的开发模型.由此将不存在QA的角色,或者仅 ...
- java之Socket传递图片
客户端: package client; import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import ...
- 通过Exception获取其中的信息
private static String getCrashMessage(Exception ex) { Writer writer = new StringWriter(); Pri ...
- 洛谷 P2814 家谱
题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. 输入输出格式 输入格式: 输入由多行组成,首先是一系列有关父子关系的描述,其中每一组 ...
- ABAP和Java SpringBoot的单元测试
ABAP 在ABAP类里,本地类(Local Class)里用关键字FOR TESTING声明过的方法, 在单元测试启动后会自动被调用到. Spring Boot 在Spring及Spring Boo ...
- 解决Jenkins的错误“The Server rejected the connection: None of the protocols were accepted”
1. 配置节点,配置好节点后,在节点机上运行已下载文件,双击执行,提示"The Server rejected the connection: None of the protocols w ...