插值问题
在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。
实例:海底探测问题
某公司用声纳对海底进行测试,在5×5海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。并绘出较细致的海底曲面图。
一、一元插值
一元插值是对一元数据点(xi,yi)进行插值。
1.  线性插值:由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。一般来说,数据点数越多,线性插值就越精确。
调用格式:yi=interp1(x,y,xi,’linear’)  %线性插值
zi=interp1(x,y,xi,’spline’)  %三次样条插值
wi=interp1(x,y,xi,’cubic’)  %三次多项式插值
说明:yi、zi、wi为对应xi的不同类型的插值。x、y为已知数据点。
例1:已知数据:
x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
y .3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2
求当xi=0.25时的yi的值。
程序:
x=0:.1:1;
y=[.3 .5 1 1.4 1.6 1 .6 .4 .8 1.5 2];
yi0=interp1(x,y,0.025,'linear')
xi=0:.02:1;
yi=interp1(x,y,xi,'linear');
zi=interp1(x,y,xi,'spline');
wi=interp1(x,y,xi,'cubic');
plot(x,y,'o',xi,yi,'r+',xi,zi,'g*',xi,wi,'k.-')
legend('原始点','线性点','三次样条','三次多项式')
结果:yi0 =  0.3500

要得到给定的几个点的对应函数值,可用:
xi =[ 0.2500  0.3500  0.4500]
yi=interp1(x,y,xi,'spline')
结果:
yi =1.2088  1.5802  1.3454
(二) 二元插值
二元插值与一元插值的基本思想一致,对原始数据点(x,y,z)构造见世面函数求出插值点数据(xi,yi,zi)。
一、单调节点插值函数,即x,y向量是单调的。
调用格式1:zi=interp2(x,y,z,xi,yi,’linear’)
‘liner’ 是双线性插值 (缺省)
调用格式2:zi=interp2(x,y,z,xi,yi,’nearest’)
’nearest’ 是最近邻域插值
调用格式3:zi=interp2(x,y,z,xi,yi,’spline’)
‘spline’是三次样条插值
说明:这里x和y是两个独立的向量,它们必须是单调的。z是矩阵,是由x和y确定的点上的值。z和x,y之间的关系是z(i,:)=f(x,y(i)) z(:,j)=f(x(j),y) 即:当x变化时,z的第i行与y的第i个元素相关,当y变化时z的第j列与x的第j个元素相关。如果没有对x,y赋值,则默认x=1:n, y=1:m。n和m分别是矩阵z的行数和列数。
例2:已知某处山区地形选点测量坐标数据为:
x=0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5
y=0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6
海拔高度数据为:
z=89 90 87 85 92 91 96 93 90 87 82
   92 96 98 99 95 91 89 86 84 82 84
   96 98 95 92 90 88 85 84 83 81 85
   80 81 82 89 95 96 93 92 89 86 86
   82 85 87 98 99 96 97 88 85 82 83
   82 85 89 94 95 93 92 91 86 84 88
   88 92 93 94 95 89 87 86 83 81 92
   92 96 97 98 96 93 95 84 82 81 84
   85 85 81 82 80 80 81 85 90 93 95
   84 86 81 98 99 98 97 96 95 84 87
   80 81 85 82 83 84 87 90 95 86 88
   80 82 81 84 85 86 83 82 81 80 82
   87 88 89 98 99 97 96 98 94 92 87
其地貌图为:

对数据插值加密形成地貌图。
程序:
x=0:.5:5;
y=0:.5:6;
z=[89 90 87 85 92 91 96 93 90 87 82
   92 96 98 99 95 91 89 86 84 82 84
   96 98 95 92 90 88 85 84 83 81 85
   80 81 82 89 95 96 93 92 89 86 86
   82 85 87 98 99 96 97 88 85 82 83
   82 85 89 94 95 93 92 91 86 84 88
   88 92 93 94 95 89 87 86 83 81 92
   92 96 97 98 96 93 95 84 82 81 84
   85 85 81 82 80 80 81 85 90 93 95
   84 86 81 98 99 98 97 96 95 84 87
   80 81 85 82 83 84 87 90 95 86 88
   80 82 81 84 85 86 83 82 81 80 82
   87 88 89 98 99 97 96 98 94 92 87];
mesh(x,y,z)  %绘原始数据图
xi=linspace(0,5,50);  %加密横坐标数据到50个
yi=linspace(0,6,80);  %加密纵坐标数据到60个
[xii,yii]=meshgrid(xi,yi);  %生成网格数据
zii=interp2(x,y,z,xii,yii,'cubic');  %插值
mesh(xii,yii,zii)  %加密后的地貌图
hold on     % 保持图形
[xx,yy]=meshgrid(x,y);  %生成网格数据
plot3(xx,yy,z+0.1,'ob')  %原始数据用‘O’绘出

2、二元非等距插值
调用格式:zi=griddata(x,y,z,xi,yi,’指定插值方法’)
插值方法有: linear          % 线性插值   (默认)
             bilinear     % 双线性插值
             cubic        % 三次插值
             bicubic      % 双三次插值
             nearest      % 最近邻域插值
例:用随机数据生成地貌图再进行插值
程序:
x=rand(100,1)*4-2;
y=rand(100,1)*4-2;
z=x.*exp(-x.^2-y.^2);
ti=-2:.25:2;
[xi,yi]=meshgrid(ti,ti); % 加密数据
zi=griddata(x,y,z,xi,yi);% 线性插值
mesh(xi,yi,zi)
hold on
plot3(x,y,z,'o')

拟合

简单多项式拟合

x=[0,1,2,3,4,5,7,8,9,10]

y=[0.3 ,0.5, 1, 1.4, 1.6, 1.6, 1.4, 1.8, 1.5, 2];

aa=polyfit(x,y,2);%2的位置表示函数的最高系数,aa是函数方程

a=aa(1)%第一个参数

b=aa(2)%第二个参数

c=aa(3)%第三个参数

y=polyval(aa,x);%根据函数方程获取的到y值

plot(x,y,'r');%r获取的是直线,k+获取的是点,应该使用拟合后的直线画图

MATLAB实现插值和拟合的更多相关文章

  1. Matlab随笔之插值与拟合(上)

    原文:Matlab随笔之插值与拟合(上) 1.拉格朗日插值 新建如下函数: function y=lagrange(x0,y0,x) %拉格朗日插值函数 %n 个节点数据以数组 x0, y0 输入(注 ...

  2. Matlab随笔之插值与拟合(下)

    原文:Matlab随笔之插值与拟合(下) 1.二维插值之插值节点为网格节点 已知m x n个节点:(xi,yj,zij)(i=1…m,j=1…n),且xi,yi递增.求(x,y)处的插值z. Matl ...

  3. matlab——插值与拟合

    @ 目录 前言 一.拟合 1.定义 2.三种判别准则 3.最小二乘法 (1)一般形式 (2)常用函数 (3)matlab实现 二.插值 1.定义 2.方法 (1)分段线性插值 (2)拉格朗日插值多项式 ...

  4. matlab学习——05插值和拟合(黄河小浪底调水调沙问题)

    05插值和拟合 黄河小浪底调水调沙问题 data3.txt 1800 1900 2100 2200 2300 2400 2500 2600 2650 2700 2720 2650 32 60 75 8 ...

  5. matlab学习——05插值和拟合(一维二维插值,拟合)

    05插值和拟合 1.一维插值 (1) 机床加工零件,试用分段线性和三次样条两种插值方法计算.并求x=0处的曲线斜率和13<=x<=15范围内y的最小值. x0=[0 3 5 7 9 11 ...

  6. 基于MATLAB的多项式数据拟合方法研究-毕业论文

    摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式 ...

  7. MATLAB之数据处理+公式拟合

    MATLAB之数据处理+公式拟合 前言:由试验得到一组数据,对该组数据进行处理,作图分析,分析各变量的关系,期望得到拟合公式. 试验数据背景 本次试验有三个自变量:V.M.G,因变量为F,每组试验重复 ...

  8. Python SciPy库——插值与拟合

    插值与拟合 原文链接:https://zhuanlan.zhihu.com/p/28149195 1.最小二乘拟合 实例1 # -*- coding: utf-8 -*- import numpy a ...

  9. MATLAB用“fitgmdist”函数拟合高斯混合模型(一维数据)

    MATLAB用“fitgmdist”函数拟合高斯混合模型(一维数据) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 在MATLAB中“fitgmdis ...

随机推荐

  1. Tomcat启动分析(我们为什么要配置CATALINA_HOME环境变量)

    原文:http://www.cnblogs.com/heshan664754022/archive/2013/03/27/2984357.html Tomcat启动分析(我们为什么要配置CATALIN ...

  2. JavaUtil_06_HttpUtil_使用httpclient实现

    一.简介 使用 appache 的 httpclient 来实现的 二.源码 package com.ray.weixin.gz.util; import java.io.File; import j ...

  3. C - Alyona and SpreadsheetDP

    题目链接 题意在一个矩阵中,询问l~r行是否有一列满足mp[i][j]>=mp[i-1][j](i属于l~r)即非递减序列,是输出Yes,否输出No 用vector<vector<i ...

  4. VC++6.0编译环境介绍

    大家可能一直在用VC开发软件,但是对于这个编译器却未必很了解.原因是多方面的.大多数情况下,我们只停留在"使用"它,而不会想去"了解"它.因为它只是一个工具,我 ...

  5. python字符串相关操作

    字符串搜索相关搜索指定字符串,没有返回-1:str.find('t')指定起始位置搜索:str.find('t',start)指定起始及结束位置搜索:str.find('t',start,end)从右 ...

  6. java正则表达式匹配文本中想要的字符串

    需求:获取一个本地文件中所有符合 $[MAKE_PACKAGE] 格式的字符串,并输出到另一个文件中. public static void main(String[] args) throws Ex ...

  7. Java进阶08 GUI

    GUI(Graphical User Interface)提供了图形化的界面,允许用户以图形的方式与系统进行互动.在GUI推广之前,用户通常要以文本命令的方式来控制计算机.GUI直观的将计算机的功能呈 ...

  8. android:layout_weight的真实含义/android:layout_gravity的条件

    用layout_weight的时候,不要把宽度(或是高度,你想分配weight的那个)设成match_parent. android:layout_weight只适用于LinearLayout and ...

  9. CodeForces Gym 100228 Graph of Inversions

    题目大意 对于一个长为$N$的序列$A$,定义它所对应的逆序图: 有$N$个点组成,标号为$1...N$的无向图,对于每一组$i,j(i<j)$若存在$A_i>A_j$则在新图中就存在一条 ...

  10. uoj problem 10

    uoj problem 10 题目大意: 给定任务若干,每个任务在\(t_i\)收到,需要\(s_i\)秒去完成,优先级为\(p_i\) 你采用如下策略: 每一秒开始时,先收到所有在该秒出现的任务,然 ...