Darknet19(
(conv1s): Sequential(
(0): Sequential(
(0): Conv2d_BatchNorm(
(conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
(1): Sequential(
(0): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
(1): Conv2d_BatchNorm(
(conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
(2): Sequential(
(0): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
(1): Conv2d_BatchNorm(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(2): Conv2d_BatchNorm(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(3): Conv2d_BatchNorm(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
(3): Sequential(
(0): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
(1): Conv2d_BatchNorm(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(2): Conv2d_BatchNorm(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(3): Conv2d_BatchNorm(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
(4): Sequential(
(0): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
(1): Conv2d_BatchNorm(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(2): Conv2d_BatchNorm(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(3): Conv2d_BatchNorm(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(4): Conv2d_BatchNorm(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(5): Conv2d_BatchNorm(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
) (conv2): Sequential(
(0): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
(1): Conv2d_BatchNorm(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(2): Conv2d_BatchNorm(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(3): Conv2d_BatchNorm(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(4): Conv2d_BatchNorm(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(5): Conv2d_BatchNorm(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
) (conv3): Sequential(
(0): Conv2d_BatchNorm(
(conv): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(1): Conv2d_BatchNorm(
(conv): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
(reorg): ReorgLayer(
) (conv4): Sequential(
(0): Conv2d_BatchNorm(
(conv): Conv2d(3072, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
) (conv5): Conv2d(
(conv): Conv2d(1024, 125, kernel_size=(1, 1), stride=(1, 1))
) (global_average_pool): AvgPool2d(kernel_size=(1, 1), stride=(1, 1), padding=0, ceil_mode=False, count_include_pad=True)
)

yolo.v2 darknet19结构的更多相关文章

  1. 目标检测之YOLO V2 V3

    YOLO V2 YOLO V2是在YOLO的基础上,融合了其他一些网络结构的特性(比如:Faster R-CNN的Anchor,GooLeNet的\(1\times1\)卷积核等),进行的升级.其目的 ...

  2. YOLO v2 损失函数源码分析

    损失函数的定义是在region_layer.c文件中,关于region层使用的参数在cfg文件的最后一个section中定义. 首先来看一看region_layer 都定义了那些属性值: layer ...

  3. yolo v2使用总结

    以下都是基于yolo v2版本的,对于现在的v3版本,可以先clone下来,再git checkout回v2版本. 玩了三四个月的yolo后发现数值相当不稳定,yolo只能用来小打小闹了. v2训练的 ...

  4. 目标检测论文解读7——YOLO v2

    背景 YOLO v1检测效果不好,且无法应用于检测密集物体. 方法 YOLO v2是在YOLO v1的基础上,做出如下改进. (1)引入很火的Batch Normalization,提高mAP和训练速 ...

  5. YOLO V2论文理解

    概述 YOLO(You Only Look Once: Unified, Real-Time Object Detection)从v1版本进化到了v2版本,作者在darknet主页先行一步放出源代码, ...

  6. YOLO系列:YOLO v2深度解析 v1 vs v2

    概述 第一,在保持原有速度的优势之下,精度上得以提升.VOC 2007数据集测试,67FPS下mAP达到76.8%,40FPS下mAP达到78.6%,可以与Faster R-CNN和SSD一战 第二, ...

  7. Darknet windows移植(YOLO v2)

    Darknet windows移植 代码地址: https://github.com/makefile/darknet 编译要求: VS2013 update5 及其之后的版本(低版本对C++标准支持 ...

  8. YOLO V2 代码分析

    先介绍YOLO[转]: 第一个颠覆ross的RCNN系列,提出region-free,把检测任务直接转换为回归来做,第一次做到精度可以,且实时性很好. 1. 直接将原图划分为SxS个grid cell ...

  9. 【计算机视觉】【神经网络与深度学习】YOLO v2 detection训练自己的数据2

    1. 前言 关于用yolo训练自己VOC格式数据的博文真的不少,但是当我按照他们的方法一步一步走下去的时候发现出了其他作者没有提及的问题.这里就我自己的经验讲讲如何训练自己的数据集. 2.数据集 这里 ...

随机推荐

  1. [LOJ #2162]「POI2011」Garbage

    题目大意:给一张$n$个点$m$条边的无向图,每条边是黑色的或白色的,要求变成一个目标颜色.可以从任意一个点开始,走一个简单环,回到开始的点,所经过的边颜色翻转.可以走无数次.问是否有一个方案完成目标 ...

  2. gulp实时刷新页面

    需要安装nodejs 全局安装gulp cnpm install -g gulp 局部安装 cnpm install -save-dev gulp 添加配置文件,新建gulpfile.js var g ...

  3. pm2使用记录

    linux 查找命令 (1)find / -name httpd.conf #在根目录下查找文件httpd.conf,表示在整个硬盘查找 (2)find /etc -name 'srm' #使用通配符 ...

  4. es6+最佳入门实践(4)

    4.函数扩展 4.1.参数默认值 默认参数就是当用户没有传值的时候函数内部默认使用的值,在es5中我们通过逻辑运算符||来实现 function Fn(a, b) { b = b || "n ...

  5. linux 大中括号变量解读

    Linux中的小括号和大括号,${}/$()/()/{}/${var:-string}/${var:=string}/${var:+string}/${var:?string}/${var%patte ...

  6. 10个简化Web开发者工作的HTML5开发工具

    HTML5的到来,改变了设计和开发的工作,完全改变了以前的开发方式. HTML5进行本身就是一个很简单,很快捷的开发技术并且带给开发人员很多不同的工具和功能,使他们的工作变得更加Cool.它的功能非常 ...

  7. Spring中报"Could not resolve placeholder"的解决方案(引入多个properties文件)

    除去properites文件路径错误.拼写错误外,出现"Could not resolve placeholder"很有可能是使用了多个PropertyPlaceholderCon ...

  8. 转载:Posix线程编程指南(2)

    概念及作用 在单线程程序中,我们经常要用到"全局变量"以实现多个函数间共享数据.在多线程环境下,由于数据空间是共享的,因此全局变量也为所有线程所共有.但有时应用程序设计中有必要提供 ...

  9. calc(NOIP模拟赛Round 3)

    原题: D e s c r i p t i o n 给三个正整数n,m和p,求(n^1+...n^m) mod p. Input 一行,三个整数n,m和p. Output 输出答案. S a m p ...

  10. ffmpeg代码笔记2:如何判断MP4文件里面的流是音频还是视频流

    http://blog.csdn.net/qq_19079937/article/details/43191211 在MP4结构体系里面,hdlr字段(具体在root->moov->tra ...