传送门

由乃tql……

然后抄了一波zcy大佬的题解

我们考虑把询问给离线,用莫队做

然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$

然后再记录一个$now1$的反串$now2$(就是每一位代表的是$N-x$),干吗用等下说

1操作的话,因为每一个位置代表一个数字,如果存在$z-y=x$,可以转化为同时存在$z$和$z-x$,那么把$now1$左移$x$位并与$now1$做$\&$运算,看看是否等于$0$,如果不是说明不存在

2操作的话,$now2$中的$y'$代表数字$N-y$,然后求是否存在$z+y=x$,也就是求是否同时满足$now1$中有$z$和$now2$中有$y'$,带进前面的式子里,$N-y'+z=x,z-y'=x-N$,然后就转化成和上面一样了,那么只要把$now2$右移$N-x$位并与$now1$做$\&$运算就行了

3操作的话,我们可以考虑枚举约数(总共是$\sqrt {n}$个,时间足够),然后在$now1$里每一次查询即可

顺带一提,代码里bitset中的any返回是否有1

 //minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<bitset>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
struct node{
int k,l,r,x,id;
}q[N+];
int m,n,l,r,s;
int a[N+],c[N+],ans[N+],rt[N+];
bitset<N+> now1,now2;
inline int operator <(node x,node y){
return rt[x.l]==rt[y.l]?rt[x.l]&?x.r<y.r:x.r>y.r:rt[x.l]<rt[y.l];
}
inline void init(){
n=read(),m=read(),s=sqrt(n);
for(int i=;i<=n;++i) a[i]=read(),rt[i]=(i-)/s+;
for(int i=;i<=m;++i){
q[i].k=read(),q[i].l=read(),q[i].r=read();
q[i].x=read(),q[i].id=i;
}
sort(q+,q++m);l=,r=;
}
inline void add(int x){if(c[x]++==)now1[x]=,now2[N-x]=;}
inline void del(int x){if(--c[x]==)now1[x]=,now2[N-x]=;}
int main(){
init();
for(int i=;i<=m;++i){
while(l<q[i].l) del(a[l++]);
while(l>q[i].l) add(a[--l]);
while(r>q[i].r) del(a[r--]);
while(r<q[i].r) add(a[++r]);
int k=q[i].k,x=q[i].x;
switch(k){
case :{
if((now1&(now1<<x)).any())
ans[q[i].id]=;
break;
}
case :{
if((now1&(now2>>(N-x))).any())
ans[q[i].id]=;
break;
}
case :{
for(int j=;j*j<=x;++j)
if(!(x%j))
if(now1[j]&&now1[x/j]){
ans[q[i].id]=;break;
}
break;
}
}
}
for(int i=;i<=m;++i)
puts(ans[i]?"hana":"bi");
return ;
}

洛谷P3674 小清新人渣的本愿(莫队)的更多相关文章

  1. 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]

    传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...

  2. 洛谷P3674 小清新人渣的本愿

    题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...

  3. 洛谷 P3674 小清新人渣的本愿

    想看题目的戳我. 我刚开始觉得这道题目好难. 直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了. 想知道这个神奇的bitset的戳我. 这个题目一看就感觉是莫队 ...

  4. P3674 小清新人渣的本愿 莫队+bitset

    ennmm...bitset能过系列. 莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\) 维护一个正向的 bitset <N> mem ...

  5. P3674 小清新人渣的本愿

    P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...

  6. Bzoj2038/洛谷P1494 小Z的袜子(莫队)

    题面 Bzoj 洛谷 题解 考虑莫队算法,首先对询问进行分块(分块大小为\(sqrt(n)\)),对于同一个块内的询问,按照左端点为第一关键字,右端点为第二关键字排序.我们统计这个区间内相同的颜色有多 ...

  7. 洛谷2709 小B的询问(莫队)

    题面 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R] ...

  8. 【题解】Luogu P3674 小清新人渣的本愿

    原题传送门 这题还算简单(我记得我刚学oi时就来写这题,然后暴力都爆零了) 看见无修改,那么这题应该是莫队 维护两个bitset,第二个是第一个的反串,bitset内维护每个数字是否出现过 第一种操作 ...

  9. luogu P3674 小清新人渣的本愿

    传送门 毒瘤lxl 本质是莫队,关键是怎么处理询问 这里需要开两个bitset(记为\(b1,b2\)),分别存\(x\)和\(n-x\)是否出现 对于询问1,即\(x-y=z\),由于\(y=x-z ...

随机推荐

  1. maven配置的问题,maven的环境变量配置

    不要在用户变量处配置用户变量,直接将maven的bin文件夹路径配置到path环境变量

  2. #pragma pack 在BITMAP结构体定义中的使用

    BITMAP位图文件主要分为如下3个部分: 块名称 对应Windows结构体定义 大小(Byte) 文件信息头 BITMAPFILEHEADER 14 位图信息头 BITMAPINFOHEADER 4 ...

  3. src路径

  4. Python函数(六)-嵌套函数

    嵌套函数就是在一个函数里再嵌套一个或多个函数 # -*- coding:utf-8 -*- __author__ = "MuT6 Sch01aR" def First(): pri ...

  5. 执行: python manage.py makemigrations报AttributeError: 'str' object has no attribute 'decode'

    找到错误代码(line146):query = query.encode(errors='replace') 解决方法:把decode改为encode即可.

  6. 2015.1.31 DataGridView自动滚动到某行

    方法一.dv.CurrentCell = dv.Rows[i].Cells[2] 但此cell不能是隐藏cell 方法二. if (dgr.Index < dv_sel_aw.FirstDisp ...

  7. myeclipse10启动service窗口报异常

    1:找到与之对应的tomcat: 2:删掉“.metadata/.plugins/org.eclipse.core.runtime/.settings/ com.genuitec.eclipse.as ...

  8. CMake 使用方法 & CMakeList.txt<转>

    CMake 使用方法 & CMakeList.txt cmake 简介 CMake是一个跨平台的安装(编译)工具,可以用简单的语句来描述所有平台的安装(编译过程).他能够输出各种各样的make ...

  9. Android Studio Build APK没有报错,但是Generate signed apk报错

    有时候 ,我们在调试APK,直接Build是可以正常生成,没有报错,但是当我们将自己的签名文件加上去,就会报错.一般情况下,我们可以在build.gradle中的android{}里面添加一个东西 l ...

  10. Unknown error: Unable to build: the file dx.jar was not loaded from the SDK folder!

    Eclipse 编译没问题,但是运行就出现这个报错:Unknown error: Unable to build: the file dx.jar was not loaded from the SD ...