Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired and came up with the tree of his own which he called a k-tree.

A k-tree is an infinite rooted tree where:

  • each vertex has exactly k children;
  • each edge has some weight;
  • if we look at the edges that goes from some vertex to its children (exactly k edges), then their weights will equal 1, 2, 3, ..., k.

The picture below shows a part of a 3-tree.

As soon as Dima, a good friend of Lesha, found out about the tree, he immediately wondered: "How many paths of total weight n (the sum of all weights of the edges in the path) are there, starting from the root of a k-tree and also containing at least one edge of weight at least d?".

Help Dima find an answer to his question. As the number of ways can be rather large, print it modulo 1000000007 (109 + 7).

Input

A single line contains three space-separated integers: n, k and d (1 ≤ n, k ≤ 100; 1 ≤ d ≤ k).

Output

Print a single integer — the answer to the problem modulo 1000000007 (109 + 7).

Examples
Input

Copy
3 3 2
Output

Copy
3
Input

Copy
3 3 3
Output

Copy
1
Input

Copy
4 3 2
Output

Copy
6
Input

Copy
4 5 2
Output

Copy
7

题目描述

最近有一个富有创造力的学生Lesha听了一个关于树的讲座。在听完讲座之后,Lesha受到了启发,并且他有一个关于k-tree(k叉树)的想法。 k-tree都是无根树,并且满足:

  1. 每一个非叶子节点都有k个孩子节点;
  2. 每一条边都有一个边权;
  3. 每一个非叶子节点指向其k个孩子节点的k条边的权值分别为1,2,3,...,k。

当Lesha的好朋友Dima看到这种树时,Dima马上想到了一个问题:“有多少条从k-tree的根节点出发的路上的边权之和等于n,并且经过的这些边中至少有一条边的边权大于等于d呢?” 现在你需要帮助Dima解决这个问题。考虑到路径总数可能会非常大,所以只需输出路径总数 mod 1000000007 即可。(1000000007=10^9+7)

考虑dp[ i ][ 1/0 ]表示总和为i时,最大值是否>=d的方案数;

然后枚举中间状态转移;

注意long long ;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream> //#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 1000005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
}
/*
int n, m;
int st, ed;
struct node {
int u, v, nxt, w;
}edge[maxn<<1]; int head[maxn], cnt; void addedge(int u, int v, int w) {
edge[cnt].u = u; edge[cnt].v = v; edge[cnt].w = w;
edge[cnt].nxt = head[u]; head[u] = cnt++;
} int rk[maxn]; int bfs() {
queue<int>q;
ms(rk);
rk[st] = 1; q.push(st);
while (!q.empty()) {
int tmp = q.front(); q.pop();
for (int i = head[tmp]; i != -1; i = edge[i].nxt) {
int to = edge[i].v;
if (rk[to] || edge[i].w <= 0)continue;
rk[to] = rk[tmp] + 1; q.push(to);
}
}
return rk[ed];
}
int dfs(int u, int flow) {
if (u == ed)return flow;
int add = 0;
for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) {
int v = edge[i].v;
if (rk[v] != rk[u] + 1 || !edge[i].w)continue;
int tmpadd = dfs(v, min(edge[i].w, flow - add));
if (!tmpadd) { rk[v] = -1; continue; }
edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd; add += tmpadd;
}
return add;
}
ll ans;
void dinic() {
while (bfs())ans += dfs(st, inf);
}
*/ int n, k, d;
ll dp[200][2]; int main()
{
//ios::sync_with_stdio(0);
//memset(head, -1, sizeof(head));
while (cin >> n >> k >> d) {
ms(dp); dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= k; j++) {
if (i >= j) {
if (j < d) {
dp[i][0] = (dp[i][0] + dp[i - j][0]) % mod;
dp[i][1] = (dp[i][1] + dp[i - j][1]) % mod;
}
else {
dp[i][1] = (dp[i][1] + dp[i - j][0] + dp[i - j][1]) % mod;
}
}
}
}
cout << (ll)dp[n][1] << endl;
}
return 0;
}
												

CF431C k-Tree dp的更多相关文章

  1. DP Intro - Tree DP Examples

    因为上次比赛sb地把一道树形dp当费用流做了,受了点刺激,用一天时间稍微搞一下树形DP,今后再好好搞一下) 基于背包原理的树形DP poj 1947 Rebuilding Roads 题意:给你一棵树 ...

  2. HDU 4359——Easy Tree DP?——————【dp+组合计数】

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  3. TYOI Day1 travel:Tree dp【处理重复走边】

    题意: 给你一棵树,n个节点,每条边有长度. 然后有q组询问(u,k),每次问你:从节点u出发,走到某个节点的距离mod k的最大值. 题解: 对于无根树上的dp,一般都是先转成以1为根的有根树,然后 ...

  4. HDU 4359 Easy Tree DP?

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  5. hdu 4050 2011北京赛区网络赛K 概率dp ***

    题目:给出1-n连续的方格,从0开始,每一个格子有4个状态,左右脚交替,向右跳,而且每一步的步长必须在给定的区间之内.当跳出n个格子或者没有格子可以跳的时候就结束了,求出游戏的期望步数 0:表示不能到 ...

  6. HDU 5629 Clarke and tree dp+prufer序列

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=562 题意: 求给每个节点的度数允许的最大值,让你求k个节点能组成的不同的生成树个数. 题解: 对于n ...

  7. HDU5629:Clarke and tree(DP,Prufer)

    Description Input Output Sample Input Sample Output Solution 题意:给你$n$个点,还有每个点的度数,问你任选$i(1\leq i \leq ...

  8. 96. Unique Binary Search Trees (Tree; DP)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  9. bzoj 1017 tree dp

    这道题几经波折啊. 最开始和vfleaking一样,把题意理解错了,认为一个装备可能被多个装备依赖,然后想不出来,去看题解. 发现自己理解错了题意,自己想想,其实也不难想到dp[i][j][k]表示“ ...

  10. HDU5293(SummerTrainingDay13-B Tree DP + 树状数组 + dfs序)

    Tree chain problem Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

随机推荐

  1. vue-cli脚手架build目录中的webpack.dev.conf.js配置文件

    此文章用来解释vue-cli脚手架build目录中的webpack.dev.conf.js配置文件 此配置文件是vue开发环境的wepack相关配置文件 关于注释 当涉及到较复杂的解释我将通过标识的方 ...

  2. sqlplus 设置显示格式

    使用sqlplus查询显示结果,显示很乱,下面有种方法可以让她显示的更好看些.1.设置显示的宽度:设置前可以先查看当前宽度: SQL> show linesize;linesize 100SQL ...

  3. CSS——display

    display的主要属性: 1.none: 不显示: 不保留其在页面中的位置,即相当于html文档中没有这个元素: visible:hidden虽然也不显示:但依然保存着他的位置和大小. 2.bloc ...

  4. LAMP 3.0 mysql配置讲解

    mysql 安装好后,我们是从安装包的 support-files 里面复制过来一个模板配置文件,默认 mysql 配置文件是在/etc/my.cnf 下,其实这个路径或者文件名字我们是可以修改的,在 ...

  5. Xshell的简单使用

    1.下载并安装 Xshell 4打开后如下图所示,会出现一个界面框,这个界面框类似于DOS的界面,需要操控远程的主机,都是通过这个界面进行操作. 2在这个界面左上角的位置有一个文件按钮,点击这个按钮. ...

  6. 【271】IDL-ENVI二次开发

    参考:String Processing Routines —— 字符串处理函数 01   STRING 返回字符串. 02   STRCMP 比较字符串,一样返回1,不一样返回0,默认大小写敏感. ...

  7. oracle DML-(insert、select、update、delete)

    一.插入记录INSERT INTO table_name (column1,column2,...) values ( value1,value2, ...); 示例:insert into emp ...

  8. Template Method模式和Strategy模式有何异同

    Template Method模式和Strategy模式有何异同 博客分类: 设计模式 Java  Template Method模式很容易理解,就是由基类提供一个模板,将各子类中不变的行为提取到基类 ...

  9. git 本地代码到github(转)

    git 本地代码到github   一·什么是gitHub? 官网解释:gitHub是一个让无论处于何地的代码工作者能工作于同一个项目,同一个版本的平台.(GitHub is a code hosti ...

  10. Express响应方法

    下表中响应对象(res)的方法向客户端返回响应,终结请求响应的循环.如果在路由句柄中一个方法也不调用,来自客户端的请求会一直挂起. 方法 描述 res.download() 提示下载文件. res.e ...