CF431C k-Tree dp
Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired and came up with the tree of his own which he called a k-tree.
A k-tree is an infinite rooted tree where:
- each vertex has exactly k children;
- each edge has some weight;
- if we look at the edges that goes from some vertex to its children (exactly k edges), then their weights will equal 1, 2, 3, ..., k.
The picture below shows a part of a 3-tree.
As soon as Dima, a good friend of Lesha, found out about the tree, he immediately wondered: "How many paths of total weight n (the sum of all weights of the edges in the path) are there, starting from the root of a k-tree and also containing at least one edge of weight at least d?".
Help Dima find an answer to his question. As the number of ways can be rather large, print it modulo 1000000007 (109 + 7).
A single line contains three space-separated integers: n, k and d (1 ≤ n, k ≤ 100; 1 ≤ d ≤ k).
Print a single integer — the answer to the problem modulo 1000000007 (109 + 7).
3 3 2
3
3 3 3
1
4 3 2
6
4 5 2
7
题目描述
最近有一个富有创造力的学生Lesha听了一个关于树的讲座。在听完讲座之后,Lesha受到了启发,并且他有一个关于k-tree(k叉树)的想法。 k-tree都是无根树,并且满足:
- 每一个非叶子节点都有k个孩子节点;
- 每一条边都有一个边权;
- 每一个非叶子节点指向其k个孩子节点的k条边的权值分别为1,2,3,...,k。
当Lesha的好朋友Dima看到这种树时,Dima马上想到了一个问题:“有多少条从k-tree的根节点出发的路上的边权之和等于n,并且经过的这些边中至少有一条边的边权大于等于d呢?” 现在你需要帮助Dima解决这个问题。考虑到路径总数可能会非常大,所以只需输出路径总数 mod 1000000007 即可。(1000000007=10^9+7)
考虑dp[ i ][ 1/0 ]表示总和为i时,最大值是否>=d的方案数;
然后枚举中间状态转移;
注意long long ;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream> //#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 1000005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
}
/*
int n, m;
int st, ed;
struct node {
int u, v, nxt, w;
}edge[maxn<<1]; int head[maxn], cnt; void addedge(int u, int v, int w) {
edge[cnt].u = u; edge[cnt].v = v; edge[cnt].w = w;
edge[cnt].nxt = head[u]; head[u] = cnt++;
} int rk[maxn]; int bfs() {
queue<int>q;
ms(rk);
rk[st] = 1; q.push(st);
while (!q.empty()) {
int tmp = q.front(); q.pop();
for (int i = head[tmp]; i != -1; i = edge[i].nxt) {
int to = edge[i].v;
if (rk[to] || edge[i].w <= 0)continue;
rk[to] = rk[tmp] + 1; q.push(to);
}
}
return rk[ed];
}
int dfs(int u, int flow) {
if (u == ed)return flow;
int add = 0;
for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) {
int v = edge[i].v;
if (rk[v] != rk[u] + 1 || !edge[i].w)continue;
int tmpadd = dfs(v, min(edge[i].w, flow - add));
if (!tmpadd) { rk[v] = -1; continue; }
edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd; add += tmpadd;
}
return add;
}
ll ans;
void dinic() {
while (bfs())ans += dfs(st, inf);
}
*/ int n, k, d;
ll dp[200][2]; int main()
{
//ios::sync_with_stdio(0);
//memset(head, -1, sizeof(head));
while (cin >> n >> k >> d) {
ms(dp); dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= k; j++) {
if (i >= j) {
if (j < d) {
dp[i][0] = (dp[i][0] + dp[i - j][0]) % mod;
dp[i][1] = (dp[i][1] + dp[i - j][1]) % mod;
}
else {
dp[i][1] = (dp[i][1] + dp[i - j][0] + dp[i - j][1]) % mod;
}
}
}
}
cout << (ll)dp[n][1] << endl;
}
return 0;
}
CF431C k-Tree dp的更多相关文章
- DP Intro - Tree DP Examples
因为上次比赛sb地把一道树形dp当费用流做了,受了点刺激,用一天时间稍微搞一下树形DP,今后再好好搞一下) 基于背包原理的树形DP poj 1947 Rebuilding Roads 题意:给你一棵树 ...
- HDU 4359——Easy Tree DP?——————【dp+组合计数】
Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- TYOI Day1 travel:Tree dp【处理重复走边】
题意: 给你一棵树,n个节点,每条边有长度. 然后有q组询问(u,k),每次问你:从节点u出发,走到某个节点的距离mod k的最大值. 题解: 对于无根树上的dp,一般都是先转成以1为根的有根树,然后 ...
- HDU 4359 Easy Tree DP?
Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- hdu 4050 2011北京赛区网络赛K 概率dp ***
题目:给出1-n连续的方格,从0开始,每一个格子有4个状态,左右脚交替,向右跳,而且每一步的步长必须在给定的区间之内.当跳出n个格子或者没有格子可以跳的时候就结束了,求出游戏的期望步数 0:表示不能到 ...
- HDU 5629 Clarke and tree dp+prufer序列
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=562 题意: 求给每个节点的度数允许的最大值,让你求k个节点能组成的不同的生成树个数. 题解: 对于n ...
- HDU5629:Clarke and tree(DP,Prufer)
Description Input Output Sample Input Sample Output Solution 题意:给你$n$个点,还有每个点的度数,问你任选$i(1\leq i \leq ...
- 96. Unique Binary Search Trees (Tree; DP)
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- bzoj 1017 tree dp
这道题几经波折啊. 最开始和vfleaking一样,把题意理解错了,认为一个装备可能被多个装备依赖,然后想不出来,去看题解. 发现自己理解错了题意,自己想想,其实也不难想到dp[i][j][k]表示“ ...
- HDU5293(SummerTrainingDay13-B Tree DP + 树状数组 + dfs序)
Tree chain problem Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
随机推荐
- Android源码中添加C可执行程序
在Android源码中添加C/CPP可执行程序一般保存在external目录中 下面是每个文件的内容 ①add.c #include "add.h" int add (int a, ...
- C#连接MSSQL
本文将介绍如何用C#连接MSSQL,C#连接SQL十分简单.我们一步一步来操作. 1.打开Microsoft SQL Server Management Studio创建一个数据库,这里我创建一个数据 ...
- executeUpdate,executeQuery,executeBatch 的区别
executeQuery : 用于实现单个结果集,例如: Select 一般使用executeQuery 就是来实现单个结果集的工具 executeUpdate 用于执行 INSERT.UPDATE ...
- WEB-INF与Webroot
WEB-INF:放在WEB-INF下的资源是浏览器访问不到的,但后台程序能跳转到的,但重定向不行
- Unity3d 脚本与C#Socket服务器传输数据
Test.cs脚本 ------------------------------------------------------------------------------------------ ...
- (转)C++中使用C代码
昨晚看书的时候碰到一个问题,在C++中如何调用C代码...于是查了一下资料...发现了一个大神写的文章挺好的. -------------------------------------------- ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-001选择排序法(Selection sort)
一.介绍 1.算法的时间和空间间复杂度 2.特点 Running time is insensitive to input. The process of finding the smallest i ...
- OpenGL编程
一.简介 OpenGL™ 是行业领域中最为广泛接纳的 2D/3D 图形 API, 其自诞生至今已催生了各种计算机平台及设备上的数千优秀应用程序.OpenGL™ 是独立于视窗操作系统或其它操作系统的,亦 ...
- 数字图像处理实验(6):PROJECT 04-02,Fourier Spectrum and Average Value 标签: 图像处理MATLABfft 2017-05-07 23:1
实验要求: Objective: To observe the Fourier spectrum by FFT and the average value of an image. Main requ ...
- java开发中用到的技术(持续更新.....)
一.数据库 1.数据库连接池:当jdbc连接数据库使用DriverManager 获取时,每次向数据库建立连接的时候都要讲connection加载到内存中,当同时使用的用户数量较大时,会造成服务器不堪 ...