CF431C k-Tree dp
Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired and came up with the tree of his own which he called a k-tree.
A k-tree is an infinite rooted tree where:
- each vertex has exactly k children;
- each edge has some weight;
- if we look at the edges that goes from some vertex to its children (exactly k edges), then their weights will equal 1, 2, 3, ..., k.
The picture below shows a part of a 3-tree.

As soon as Dima, a good friend of Lesha, found out about the tree, he immediately wondered: "How many paths of total weight n (the sum of all weights of the edges in the path) are there, starting from the root of a k-tree and also containing at least one edge of weight at least d?".
Help Dima find an answer to his question. As the number of ways can be rather large, print it modulo 1000000007 (109 + 7).
A single line contains three space-separated integers: n, k and d (1 ≤ n, k ≤ 100; 1 ≤ d ≤ k).
Print a single integer — the answer to the problem modulo 1000000007 (109 + 7).
3 3 2
3
3 3 3
1
4 3 2
6
4 5 2
7
题目描述
最近有一个富有创造力的学生Lesha听了一个关于树的讲座。在听完讲座之后,Lesha受到了启发,并且他有一个关于k-tree(k叉树)的想法。 k-tree都是无根树,并且满足:
- 每一个非叶子节点都有k个孩子节点;
- 每一条边都有一个边权;
- 每一个非叶子节点指向其k个孩子节点的k条边的权值分别为1,2,3,...,k。
当Lesha的好朋友Dima看到这种树时,Dima马上想到了一个问题:“有多少条从k-tree的根节点出发的路上的边权之和等于n,并且经过的这些边中至少有一条边的边权大于等于d呢?” 现在你需要帮助Dima解决这个问题。考虑到路径总数可能会非常大,所以只需输出路径总数 mod 1000000007 即可。(1000000007=10^9+7)
考虑dp[ i ][ 1/0 ]表示总和为i时,最大值是否>=d的方案数;
然后枚举中间状态转移;
注意long long ;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream> //#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 1000005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
}
/*
int n, m;
int st, ed;
struct node {
int u, v, nxt, w;
}edge[maxn<<1]; int head[maxn], cnt; void addedge(int u, int v, int w) {
edge[cnt].u = u; edge[cnt].v = v; edge[cnt].w = w;
edge[cnt].nxt = head[u]; head[u] = cnt++;
} int rk[maxn]; int bfs() {
queue<int>q;
ms(rk);
rk[st] = 1; q.push(st);
while (!q.empty()) {
int tmp = q.front(); q.pop();
for (int i = head[tmp]; i != -1; i = edge[i].nxt) {
int to = edge[i].v;
if (rk[to] || edge[i].w <= 0)continue;
rk[to] = rk[tmp] + 1; q.push(to);
}
}
return rk[ed];
}
int dfs(int u, int flow) {
if (u == ed)return flow;
int add = 0;
for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) {
int v = edge[i].v;
if (rk[v] != rk[u] + 1 || !edge[i].w)continue;
int tmpadd = dfs(v, min(edge[i].w, flow - add));
if (!tmpadd) { rk[v] = -1; continue; }
edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd; add += tmpadd;
}
return add;
}
ll ans;
void dinic() {
while (bfs())ans += dfs(st, inf);
}
*/ int n, k, d;
ll dp[200][2]; int main()
{
//ios::sync_with_stdio(0);
//memset(head, -1, sizeof(head));
while (cin >> n >> k >> d) {
ms(dp); dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= k; j++) {
if (i >= j) {
if (j < d) {
dp[i][0] = (dp[i][0] + dp[i - j][0]) % mod;
dp[i][1] = (dp[i][1] + dp[i - j][1]) % mod;
}
else {
dp[i][1] = (dp[i][1] + dp[i - j][0] + dp[i - j][1]) % mod;
}
}
}
}
cout << (ll)dp[n][1] << endl;
}
return 0;
}
CF431C k-Tree dp的更多相关文章
- DP Intro - Tree DP Examples
因为上次比赛sb地把一道树形dp当费用流做了,受了点刺激,用一天时间稍微搞一下树形DP,今后再好好搞一下) 基于背包原理的树形DP poj 1947 Rebuilding Roads 题意:给你一棵树 ...
- HDU 4359——Easy Tree DP?——————【dp+组合计数】
Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- TYOI Day1 travel:Tree dp【处理重复走边】
题意: 给你一棵树,n个节点,每条边有长度. 然后有q组询问(u,k),每次问你:从节点u出发,走到某个节点的距离mod k的最大值. 题解: 对于无根树上的dp,一般都是先转成以1为根的有根树,然后 ...
- HDU 4359 Easy Tree DP?
Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- hdu 4050 2011北京赛区网络赛K 概率dp ***
题目:给出1-n连续的方格,从0开始,每一个格子有4个状态,左右脚交替,向右跳,而且每一步的步长必须在给定的区间之内.当跳出n个格子或者没有格子可以跳的时候就结束了,求出游戏的期望步数 0:表示不能到 ...
- HDU 5629 Clarke and tree dp+prufer序列
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=562 题意: 求给每个节点的度数允许的最大值,让你求k个节点能组成的不同的生成树个数. 题解: 对于n ...
- HDU5629:Clarke and tree(DP,Prufer)
Description Input Output Sample Input Sample Output Solution 题意:给你$n$个点,还有每个点的度数,问你任选$i(1\leq i \leq ...
- 96. Unique Binary Search Trees (Tree; DP)
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- bzoj 1017 tree dp
这道题几经波折啊. 最开始和vfleaking一样,把题意理解错了,认为一个装备可能被多个装备依赖,然后想不出来,去看题解. 发现自己理解错了题意,自己想想,其实也不难想到dp[i][j][k]表示“ ...
- HDU5293(SummerTrainingDay13-B Tree DP + 树状数组 + dfs序)
Tree chain problem Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
随机推荐
- 将本地代码上传至github
注册github账号 https://github.com/ 安装git工具 https://git-for-windows.github.io 1.在github中创建一个项目 2.填写相应信息,点 ...
- Windows下自由创建.htaccess文件的N种方法
.htaccess是apache的访问控制文件,apache中httpd.conf的选项配合此文件,完美实现了目录.站点的访问控 制,当然最多的还是rewrite功能,即URL重写,PHP中实现伪静态 ...
- 获取Linux权限后安装rootkit
1.首先获得远程服务器的root权限,当然这是基本的也是最难的. 2.然后下载rootkit程序,本文用到的是mafix. 3.开始安装 wget http://godpock.googlecode. ...
- java 多线程系列基础篇(六)之线程让步
1. yield()介绍 yield()的作用是让步.它能让当前线程由“运行状态”进入到“就绪状态”,从而让其它具有相同优先级的等待线程获取执行权:但是,并不能保证在当前线程调用yield()之后,其 ...
- 使用matplotlib的示例:调整字体-设置刻度、坐标、colormap和colorbar等
使用matplotlib的示例:调整字体-设置刻度.坐标.colormap和colorbar等 2013-08-09 19:04 27805人阅读 评论(1) 收藏 举报 分类: Python(71 ...
- 类型:.net;问题:iis注册;结果:.net4.0注册到IIS ,重新注册IIS ,iis注册
.net4.0注册到IIS ,重新注册IIS ,iis注册 IIS和.netfw4.0安装顺序是从前到后,如果不小心颠倒了,无所谓. 打开程序-运行-cmd:输入一下命令重新注册IIS C:\WI ...
- UML在软件开发中各个阶段的作用和意义
经典的软件工程思想将软件开发分成5个阶段:需求分析,系统分析与设计,系统实现,测试及维护五个阶段. 之所以如此,是因为软件开发中饣含了物和人的因素,存在着很大的不确定性,这使得软件工程不可能像理想的, ...
- 今天出现编码出现了No suitable driver found for jdbc
出现这样的情况,一般有四种原因: 一:连接URL格式出现了问题(Connection conn=DriverManager.getConnection("jdbc:mysql://local ...
- java中sleep()的用法
Thread.sleep(long millis)和Thread.sleep(long millis, int nanos)静态方法强制当前正在执行的线程休眠(暂停执行),以“减慢线程”. 当线程睡眠 ...
- Python之条件语句以及循环
Python代码的缩进规则.具有相同缩进的代码被视为代码块 缩进请严格按照Python的习惯写法:4个空格,不要使用Tab,更不要混合Tab和空格,否则很容易造成因为缩进引起的语法错误. 注意: if ...