Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。 
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4
1
13
100
1234567

Sample Output

1
19
163
2030745

HINT

对于 100%的数据有 1 ≤ Ki ≤ 10^9

,    T ≤ 50

莫比乌斯反演

感觉这种题的做题思路就是求出莫比乌斯函数,然后求出前缀和,再统计1~L-1和1~R中有多少符合条件的,减一减就好了

或许是因为我做的少吧。。。

这个题再做一下二分。。。注意一下二分边界!!!各种WA

 #include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=;
int mu[N],pri[N],sum[N];
int tot,T,a,b,c,d,k,ans;
bool mark[N];
void pre(){
mu[]=;
for (int i=;i<=;i++){
if (!mark[i]){
pri[++tot]=i;
mu[i]=-;
}
for (int j=;j<=tot&&pri[j]*i<=;j++){
mark[pri[j]*i]=;
if(i%pri[j]==) {
mu[pri[j]*i]=;break;
}else mu[pri[j]*i]=-mu[i];
}
}
}; bool calc(int x){
int y=sqrt(x);long long sum=;
for (int i=;i<=y;i++){
sum+=mu[i]*(x/(i*i));
}
if (sum>=k) return ;return ;
} int main(){
pre();
scanf("%d",&T);
while(T--){
scanf("%d",&k);
long long l=k,r=;
while(l<r){
long long mid=(l+r)>>;
if (!calc(mid))l=mid+;
else r=mid,ans=mid;
}
printf("%d\n",ans);
}
}

【BZOJ 2440】[中山市选2011]完全平方数的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  2. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  3. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  4. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  5. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  6. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  7. BZOJ 2440 [中山市选2011]完全平方数 二分+容斥

    直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...

  8. bzoj 2440: [中山市选2011]完全平方数

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

  9. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

  10. BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数

    $\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...

随机推荐

  1. vim 编辑器 打开GB2312、GBK文件乱码解决方法

    安装好的操作系统一般都带有vim编辑器,但是默认不支持GB2312中文,打开文件出现乱码,解决办法如下. 1.打开以下文件 sudo vim /var/lib/locales/supported.d/ ...

  2. Adobe Edge Animate –地球自转动画的实现,类似flash遮罩层的效果

    Adobe Edge Animate –地球自转动画的实现,类似flash遮罩层的效果 版权声明: 本文版权属于 北京联友天下科技发展有限公司. 转载的时候请注明版权和原文地址. 目前Edge的功能尚 ...

  3. LeetCode 258

    Add Digits Given a non-negative integer num, repeatedly add all its digits until the result has only ...

  4. hdu1565 网络流或状态压缩DP

    对于网络流有一个定理: 最小点权覆盖集=最大网络流: 最大点权独立集=总权值-最小点权覆盖集: 网络流解法代码如下: #include<cstdio> #include<iostre ...

  5. css尖角

    .market-nav-arrow { ; ; ; border-style: solid; border-width: 7px 0px 7px 7px; border-color: transpar ...

  6. Android Studio ndk-Jni开发详细

    http://www.open-open.com/lib/view/open1451917048573.html Java Native Interface (JNI)标准是java平台的一部分,它允 ...

  7. Error 1406

    在安装office2010时出现错误提示:Error 1406 解决办法:在注册表中搜索“Image File Execution Options”,设置其权限:添加当前用户并授予所有权限,有时需要授 ...

  8. Objective-C(iOS)严格单例模式正确实现

    注:本文所有权归作者所有,转载请注明出处 当希望在一个应用程序中某个类的对象只能存在一个的时候就可以考虑用单例模式来实现,单例模式在C++中比较容易实现(只需把构造函数声明为private),而在Ob ...

  9. 设置TextView文字居中

    有2种方法可以设置TextView文字居中: 一:在xml文件设置:android:gravity="center" 二:在程序中设置:m_TxtTitle.setGravity( ...

  10. (转)C# 数据类型映射 (SQLite,MySQL,MSSQL,Oracle)

    一.C# vs SQLite: C# SQLite 字段名 类型 库类型 GetFieldType(#) 转换 备注 F_BOOL bool BIT NOT NULL Boolean F_BOOL_N ...