A - ACM Computer Factory POJ - 3436 网络流
A - ACM Computer Factory
As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.
Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.
Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.
Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.
Output specification describes the result of the operation, and is a set of Pnumbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.
The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.
After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.
As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.
Input
Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,PDi,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part j, Di,k — output specification for part k.
Constraints
1 ≤ P ≤ 10, 1 ≤ N ≤ 50, 1 ≤ Qi ≤ 10000
Output
Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.
If several solutions exist, output any of them.
Sample Input
Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1
Sample Output
Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0
Hint
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + ;
struct edge
{
int u, v, c, f;
edge(int u, int v, int c, int f) :u(u), v(v), c(c), f(f) {}
};
vector<edge>e;
vector<int>G[maxn];
int level[maxn];//BFS分层,表示每个点的层数
int iter[maxn];//当前弧优化
int m;
void init(int n)
{
for (int i = ; i <= n; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c)
{
e.push_back(edge(u, v, c, ));
e.push_back(edge(v, u, , ));
m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
void BFS(int s)//预处理出level数组
//直接BFS到每个点
{
memset(level, -, sizeof(level));
queue<int>q;
level[s] = ;
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
for (int v = ; v < G[u].size(); v++)
{
edge& now = e[G[u][v]];
if (now.c > now.f && level[now.v] < )
{
level[now.v] = level[u] + ;
q.push(now.v);
}
}
}
}
int dfs(int u, int t, int f)//DFS寻找增广路
{
if (u == t)return f;//已经到达源点,返回流量f
for (int &v = iter[u]; v < G[u].size(); v++)
//这里用iter数组表示每个点目前的弧,这是为了防止在一次寻找增广路的时候,对一些边多次遍历
//在每次找增广路的时候,数组要清空
{
edge &now = e[G[u][v]];
if (now.c - now.f > && level[u] < level[now.v])
//now.c - now.f > 0表示这条路还未满
//level[u] < level[now.v]表示这条路是最短路,一定到达下一层,这就是Dinic算法的思想
{
int d = dfs(now.v, t, min(f, now.c - now.f));
if (d > )
{
now.f += d;//正向边流量加d
e[G[u][v] ^ ].f -= d;
//反向边减d,此处在存储边的时候两条反向边可以通过^操作直接找到
return d;
}
}
}
return ;
}
int Maxflow(int s, int t)
{
int flow = ;
for (;;)
{
BFS(s);
if (level[t] < )return flow;//残余网络中到达不了t,增广路不存在
memset(iter, , sizeof(iter));//清空当前弧数组
int f;//记录增广路的可增加的流量
while ((f = dfs(s, t, INF)) > )
{
flow += f;
}
}
return flow;
} int main()
{
int n, m;
while(scanf("%d%d",&n,&m)!=EOF)//n是城市的数量,m是高速公路的数量
{
init(*n+);
int s, t, x, y;
scanf("%d%d", &s, &t);
for(int i=;i<=n;i++)
{
scanf("%d", &x);
add(i, i + n, x);
}
for(int i=;i<=m;i++)
{
scanf("%d%d", &x, &y);
add(x + n, y, inf);
add(y+n, x, inf);
}
int ans = Maxflow(s, t+n);
printf("%d\n", ans);
}
return ;
}
A - ACM Computer Factory POJ - 3436 网络流的更多相关文章
- ACM Computer Factory POJ - 3436 网络流拆点+路径还原
http://poj.org/problem?id=3436 每台电脑有$p$个组成部分,有$n$个工厂加工电脑. 每个工厂对于进入工厂的半成品的每个组成部分都有要求,由$p$个数字描述,0代表这个部 ...
- ACM Computer Factory - poj 3436 (最大流)
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5949 Accepted: 2053 Special Judge ...
- (网络流)ACM Computer Factory --POJ --3436
链接: http://poj.org/problem?id=3436 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#probl ...
- A - ACM Computer Factory - poj 3436(最大流)
题意:有一个ACM工厂会生产一些电脑,在这个工厂里面有一些生产线,分别生产不同的零件,不过他们生产的电脑可能是一体机,所以只能一些零件加工后别的生产线才可以继续加工,比如产品A在生产线1号加工后继续前 ...
- POJ 3436 ACM Computer Factory (网络流,最大流)
POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...
- POJ 3436:ACM Computer Factory 网络流
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6247 Accepted: 2 ...
- Poj 3436 ACM Computer Factory (最大流)
题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...
- POJ 3464 ACM Computer Factory
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4829 Accepted: 1641 ...
- POJ-3436 ACM Computer Factory(网络流EK)
As you know, all the computers used for ACM contests must be identical, so the participants compete ...
随机推荐
- https的秘钥公钥以及之间的会话流程
一 共享秘钥 1.1 概念 共享秘钥和我们生活中同一把锁的钥匙概念类似,对同一把锁来说,加锁时使用什么钥匙,解锁也必须使用同样的钥匙. 1.2 共享秘钥在HTTP传输中的缺点 以共享密钥方式加密时 ...
- AJ学IOS(04)UI之半小时搞定Tom猫
AJ分享 必须精品 效果图 曾经风靡一时的tom猫其实制作起来那是叫一个相当的easy啊 功能全部实现,(关键是素材,没有素材的可以加我微信) 新手也可以很快的完成tom这个很拉轰的ios应用哦 然 ...
- Java并发编程实战 02Java如何解决可见性和有序性问题
摘要 在上一篇文章当中,讲到了CPU缓存导致可见性.线程切换导致了原子性.编译优化导致了有序性问题.那么这篇文章就先解决其中的可见性和有序性问题,引出了今天的主角:Java内存模型(面试并发的时候会经 ...
- 远程登录redis
没想到吧,我居然已经摸到了redis. 远程登录redis redis-cli -h 127.0.0.1 -p 6379 ip地址和端口记得换成自己的
- PHP函数:fopen
fopen() - 打开文件或者 URL. 注意:array_key_exists() 仅仅搜索第一维的键. 多维数组里嵌套的键不会被搜索到. 说明: fopen ( string $filenam ...
- kioptrix靶机记录
靶机地址:172.16.1.193 Kali地址:172.16.1.107 首页为Apache测试页,没看到有价值信息 尝试目录扫描: 点击查看: http://172.16.1.193/index. ...
- layui table渲染和数据处理
最近在用layui开发管理系统,果然是"累"ui 实现功能:将之前选择的选项勾选,渲染备注信息(原数据为空的列) <table class="layui-hide& ...
- python 工具链 包管理工具 pip
Installation mac下可以采用 brew,easy_install(python自带)等方式安装. centos下可以采用yum,easy_install等方式安装. 但是上面两种方式在系 ...
- python 异步Web框架sanic
我们继续学习Python异步编程,这里将介绍异步Web框架sanic,为什么不是tornado?从框架的易用性来说,Flask要远远比tornado简单,可惜flask不支持异步,而sanic就是类似 ...
- 云开发网站托管悄悄上线了 Next.js 的支持
我们知道部署web应用程序的最佳方式是作为静态HTML应用程序,因为他对搜索引擎很友好,速度快等等,这对我们写个人博客这样的小型网站无异于非常nice.如果你的应用可以作为静态HTML,那么可以试试N ...