A - ACM Computer Factory POJ - 3436 网络流
A - ACM Computer Factory
As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.
Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.
Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.
Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.
Output specification describes the result of the operation, and is a set of Pnumbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.
The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.
After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.
As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.
Input
Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,PDi,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part j, Di,k — output specification for part k.
Constraints
1 ≤ P ≤ 10, 1 ≤ N ≤ 50, 1 ≤ Qi ≤ 10000
Output
Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.
If several solutions exist, output any of them.
Sample Input
Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1
Sample Output
Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0
Hint
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + ;
struct edge
{
int u, v, c, f;
edge(int u, int v, int c, int f) :u(u), v(v), c(c), f(f) {}
};
vector<edge>e;
vector<int>G[maxn];
int level[maxn];//BFS分层,表示每个点的层数
int iter[maxn];//当前弧优化
int m;
void init(int n)
{
for (int i = ; i <= n; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c)
{
e.push_back(edge(u, v, c, ));
e.push_back(edge(v, u, , ));
m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
void BFS(int s)//预处理出level数组
//直接BFS到每个点
{
memset(level, -, sizeof(level));
queue<int>q;
level[s] = ;
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
for (int v = ; v < G[u].size(); v++)
{
edge& now = e[G[u][v]];
if (now.c > now.f && level[now.v] < )
{
level[now.v] = level[u] + ;
q.push(now.v);
}
}
}
}
int dfs(int u, int t, int f)//DFS寻找增广路
{
if (u == t)return f;//已经到达源点,返回流量f
for (int &v = iter[u]; v < G[u].size(); v++)
//这里用iter数组表示每个点目前的弧,这是为了防止在一次寻找增广路的时候,对一些边多次遍历
//在每次找增广路的时候,数组要清空
{
edge &now = e[G[u][v]];
if (now.c - now.f > && level[u] < level[now.v])
//now.c - now.f > 0表示这条路还未满
//level[u] < level[now.v]表示这条路是最短路,一定到达下一层,这就是Dinic算法的思想
{
int d = dfs(now.v, t, min(f, now.c - now.f));
if (d > )
{
now.f += d;//正向边流量加d
e[G[u][v] ^ ].f -= d;
//反向边减d,此处在存储边的时候两条反向边可以通过^操作直接找到
return d;
}
}
}
return ;
}
int Maxflow(int s, int t)
{
int flow = ;
for (;;)
{
BFS(s);
if (level[t] < )return flow;//残余网络中到达不了t,增广路不存在
memset(iter, , sizeof(iter));//清空当前弧数组
int f;//记录增广路的可增加的流量
while ((f = dfs(s, t, INF)) > )
{
flow += f;
}
}
return flow;
} int main()
{
int n, m;
while(scanf("%d%d",&n,&m)!=EOF)//n是城市的数量,m是高速公路的数量
{
init(*n+);
int s, t, x, y;
scanf("%d%d", &s, &t);
for(int i=;i<=n;i++)
{
scanf("%d", &x);
add(i, i + n, x);
}
for(int i=;i<=m;i++)
{
scanf("%d%d", &x, &y);
add(x + n, y, inf);
add(y+n, x, inf);
}
int ans = Maxflow(s, t+n);
printf("%d\n", ans);
}
return ;
}
A - ACM Computer Factory POJ - 3436 网络流的更多相关文章
- ACM Computer Factory POJ - 3436 网络流拆点+路径还原
http://poj.org/problem?id=3436 每台电脑有$p$个组成部分,有$n$个工厂加工电脑. 每个工厂对于进入工厂的半成品的每个组成部分都有要求,由$p$个数字描述,0代表这个部 ...
- ACM Computer Factory - poj 3436 (最大流)
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5949 Accepted: 2053 Special Judge ...
- (网络流)ACM Computer Factory --POJ --3436
链接: http://poj.org/problem?id=3436 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#probl ...
- A - ACM Computer Factory - poj 3436(最大流)
题意:有一个ACM工厂会生产一些电脑,在这个工厂里面有一些生产线,分别生产不同的零件,不过他们生产的电脑可能是一体机,所以只能一些零件加工后别的生产线才可以继续加工,比如产品A在生产线1号加工后继续前 ...
- POJ 3436 ACM Computer Factory (网络流,最大流)
POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...
- POJ 3436:ACM Computer Factory 网络流
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6247 Accepted: 2 ...
- Poj 3436 ACM Computer Factory (最大流)
题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...
- POJ 3464 ACM Computer Factory
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4829 Accepted: 1641 ...
- POJ-3436 ACM Computer Factory(网络流EK)
As you know, all the computers used for ACM contests must be identical, so the participants compete ...
随机推荐
- 11-JS变量
一. JavaScript 是什么 JavaScript是一种运行在客户端(浏览器)的脚本语言 客户端:客户端是相对于服务器而言的,在这里先简单理解为浏览器 浏览器就是一个客户端软件,浏览器从服务器上 ...
- Sprint 5 summary: UI 界面更新,Azure端部署和用户反馈分析 12/28/2015
本次sprint主要完成的任务有对手机APP的UI界面的更新,同时对Azure客户端的部署进行了相应的学习和有关的程序设计.同时对于ALPHA release的用户反馈做出相应的分析以确定接下来工作的 ...
- sprint3总结 && sprint4计划
sprint3总结 在一周时间里,逻辑部分顺利的将数据库,查词,UI部分连接到一起.并且各部分也针对新的要求做出了一些修改,目前数据库和查词alpha版已经完成,UI部分还需要一些美化,逻辑部分也还需 ...
- CodeForces - 913C (贪心)
点完菜,他们发现好像觉得少了点什么? 想想马上就要回老家了某不愿透露姓名的林姓学长再次却陷入了沉思......... 他默默的去前台打算点几瓶二锅头. 他发现菜单上有n 种不同毫升的酒. 第 i 种有 ...
- Python - 利用词云wordcloud,jieba和中国地图制作四大名著的热词图
热词图很酷炫,也非常适合热点事件,抓住重点,以图文结合的方式表现出来,很有冲击力.下面这段代码是制作热词图的,用到了以下技术: jieba,把文本分词 wordcloud,制作热图 chardet,辨 ...
- 常见web漏洞整理之进击吧xss!!!
XSS在线测试环境: http://xss-quiz.int21h.jp/ https://brutelogic.com.br/xss.php 这两个站对xss的理解很有帮助!!! 参考链接: htt ...
- [PHP][thinkphp5] 学习一:增删改查
<?php namespace app\index\controller; use think\Controller; use think\Db; class Test extends Cont ...
- mongoDB(一)——mongoDB安装部署和常用shell命令
1.mongoDB简介 mongoDB 是由C++语言编写的,是一种分布式的面向文档存储的开源nosql数据库.nosql是Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统 ...
- 关于JavaEE中Spring模块的学习!
七大模块,如下: 1. Spring Core: Core封装包是框架的最基础部分,提供IOC和依赖注入特性.这里的基础概念是BeanFactory,它提供对Factory模式的经典实现来消除对程序性 ...
- 开发机直连 Docker 中的 Redis 容器小教程
在笔者日常开发中,都是把redis装在windows系统中.虽然可以通过RedisDesktopManager等客户端工具连接操作redis,但是还是觉得low了一些.因为作为程序员,我可能更想在Li ...