题目

Given an increasing sequence S of N integers, the median is the number at the middle position. For example, the median of S1={11, 12, 13, 14} is 12, and the median of S2={9, 10, 15, 16, 17} is 15. The median of two sequences is defined to be the median of the nondecreasing sequence which contains all the elements of both sequences. For example, the median of S1 and S2 is 13. Given two increasing sequences of integers, you are asked to find their median.

Input

Each input file contains one test case. Each case occupies 2 lines, each gives the information of a sequence. For each sequence, the first positive integer N (<=1000000) is the size of that sequence. Then N integers follow, separated by a space. It is guaranteed that all the integers are in the range of long int.

Output

For each test case you should output the median of the two given sequences in a line.

Sample Input

4 11 12 13 14

5 9 10 15 16 17

Sample Output

13

题目分析

已知两个有序序列S1,S2,求有序序列S中间位置的元素(S=S1+S2)

解题思路

  1. 输入S1,S2并合并,打印中间位置元素
  2. two pointer思想:两个指针,分别指向S1,S2当前元素,比较大小,先将小的合并,并向前移动一位
  3. 合并时优化
    • 1 只要到达中间位置即可打印退出,不需要处理后续数据的合并;
    • 2 哨兵简化合并操作

易错点

  1. S长度分别为偶数和奇数时,中间位置计算为(N1+N2-1)>>1

知识点

  1. 利用哨兵简化合并操作
  2. two pointer思想合并两个有序集合为一个有序集合

Code

Code 01(最优、哨兵简化合并、中间位置后数据不处理)

#include <iostream>
#include <algorithm>
using namespace std;
int main(int argc, char * argv[]) {
// 1 输入数据
int N1,N2;
scanf("%d",&N1);
int S1[N1+1]= {0};
for(int i=0; i<N1; i++)scanf("%d",&S1[i]);
scanf("%d",&N2);
int S2[N2+1]= {0};
for(int i=0; i<N2; i++)scanf("%d",&S2[i]);
S1[N1]=S2[N2]=0x7fffffff;// 哨兵 // 2 合并序列--哨兵+若索引到达midpos,直接打印S[midpost],后面的数据不需要处理
int i=0,j=0,index=0,cnt=0,S[N1+N2]= {0};
int midpos = (N1+N2-1)>>1;
while(index<N1+N2) {
if(S1[i]<=S2[j]) S[index++]=S1[i++];
else S[index++]=S2[j++];
if(index-1==midpos) break;
}
printf("%d",S[midpos]); return 0;
}

Code 02(哨兵简化合并、中间位置后续数据处理)

#include <iostream>
#include <algorithm>
using namespace std;
int main(int argc, char * argv[]) {
// 1 输入数据
int N1,N2;
scanf("%d",&N1);
int S1[N1+1]= {0};
for(int i=0; i<N1; i++)scanf("%d",&S1[i]);
scanf("%d",&N2);
int S2[N2+1]= {0};
for(int i=0; i<N2; i++)scanf("%d",&S2[i]);
S1[N1]=S2[N2]=0x7fffffff;// 哨兵 // 2 合并序列--哨兵
int i=0,j=0,index=0,S[N1+N2]= {0};
while(index<N1+N2) {
if(S1[i]<=S2[j]) {
S[index++]=S1[i++];
} else {
S[index++]=S2[j++];
}
} printf("%d",S[((N1+N2-1)>>1)]);
return 0;
}

Code 03(无哨兵简化合并、中间位置后续数据处理)

#include <iostream>
#include <algorithm>
using namespace std;
int main(int argc, char * argv[]) {
// 1 输入数据
int N1,N2;
scanf("%d",&N1);
int S1[N1]= {0};
for(int i=0; i<N1; i++)scanf("%d",&S1[i]);
scanf("%d",&N2);
int S2[N2]= {0};
for(int i=0; i<N2; i++)scanf("%d",&S2[i]); // 2 合并序列
int i=0,j=0,index=0,S[N1+N2]= {0};
while(i<N1&&j<N2) {
if(S1[i]<=S2[j]) {
S[index++]=S1[i++];
} else {
S[index++]=S2[j++];
}
}
while(i<N1)S[index++]=S1[i++];
while(j<N2)S[index++]=S2[j++]; printf("%d",S[((N1+N2-1)>>1)]);
return 0;
}

PAT Advanced 1029 Median (25) [two pointers]的更多相关文章

  1. PAT甲 1029. Median (25) 2016-09-09 23:11 27人阅读 评论(0) 收藏

    1029. Median (25) 时间限制 1000 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Given an incr ...

  2. PAT 甲级 1029 Median (25 分)(思维题,找两个队列的中位数,没想到)*

    1029 Median (25 分)   Given an increasing sequence S of N integers, the median is the number at the m ...

  3. 【PAT】1029. Median (25)

    Given an increasing sequence S of N integers, the median is the number at the middle position. For e ...

  4. 1029 Median (25 分)

    1029 Median (25 分)   Given an increasing sequence S of N integers, the median is the number at the m ...

  5. PAT (Advanced Level) 1029. Median (25)

    scanf读入居然会超时...用了一下输入挂才AC... #include<cstdio> #include<cstring> #include<cmath> #i ...

  6. PAT 1029 Median (25分) 有序数组合并与防坑指南

    题目 Given an increasing sequence S of N integers, the median is the number at the middle position. Fo ...

  7. PAT甲题题解-1029. Median (25)-求两序列的中位数,题目更新了之后不水了

    这个是原先AC的代码,但是目前最后一个样例会超内存,也就是开不了两个数组来保存两个序列了,意味着我们只能开一个数组来存,这就需要利用到两个数组都有序的性质了. #include <iostrea ...

  8. 【PAT甲级】1029 Median (25 分)

    题意: 输入一个正整数N(<=2e5),接着输入N个非递减序的长整数. 输入一个正整数N(<=2e5),接着输入N个非递减序的长整数.(重复一次) 输出两组数合并后的中位数.(200ms, ...

  9. PAT 甲级 1029 Median

    https://pintia.cn/problem-sets/994805342720868352/problems/994805466364755968 Given an increasing se ...

随机推荐

  1. React 学习笔记(2) 路由和UI组件使用

    安装依赖 cnpm install react-router-dom -S // 或 yarn add react-router-dom 导入 // index.js import React fro ...

  2. Flink on yarn以及实现jobManager 高可用(HA)

    on yarn https://ci.apache.org/projects/flink/flink-docs-release-1.8/ops/deployment/yarn_setup.html f ...

  3. java菜鸟第一天

  4. CodeForces - 782B The Meeting Place Cannot Be Changed(精度二分)

    题意:在一维坐标轴上,给定n个点的坐标以及他们的最大移动速度,问他们能聚到某一点处的最短时间. 分析: 1.二分枚举最短时间即可. 2.通过检查当前时间下,各点的最大移动范围之间是否有交集,不断缩小搜 ...

  5. POJ 1423:Big Number 求N的阶乘的长度 斯特林公式

    Big Number Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27027   Accepted: 8626 Descr ...

  6. EUI库 - EXML

        EXML是可以运行时加载解析的   <e:Skin class="skins.ButtonSkin" states="up,down,disabled&qu ...

  7. 关于SI4432数据手册的简单讲解

    SI4432是高度集成度单芯片无线ISM收发器件.EZRadioPRO系列包括了发射机.接收机和射频收发器,让设计工程师可以有选择的设计利用里面的无线部分. SI4432提供了先进的无线功能,包括连续 ...

  8. 干货分享:Essay写作收集论据的三个方法

    在很多时候,中国留学生写出的Essay在西方学术界看来是存在plagiarism的情况.并不是说咱们写的所有东西都是抄袭,而是思维逻辑和利用证据的方式与西方权威的academic writing不同. ...

  9. quartz详解3:quartz数据库集群-锁机制

    http://blog.itpub.NET/11627468/viewspace-1764753/ 一.quartz数据库锁 其中,QRTZ_LOCKS就是Quartz集群实现同步机制的行锁表,其表结 ...

  10. Codeforces 1296D - Fight with Monsters

    题目大意: n 只怪兽,每只的血量为 h[i] ,你的攻击力为 a ,你的对手攻击力为 b 打每只怪兽时,都是你先出手,然后你的对手出手,这样轮流攻击 如果是你给予了怪兽最后一击,你就能得到一分 你还 ...