生物统计与实验设计-统计学基础-2&区间估计-1

正态分布参数:均值和方差

其中,选择1d是因为好算;通常,95%区分大概率事件和小概率事件,

当总体是正态分布时,可以利用常用抽样分布估计出样本参数:

抽样分布是样本估计量是样本的一个函数,在统计学中称作统计量(这就是说,统计量由样本值计算得到),因此抽样分布也是指统计量的分布。以下是当总体满足正态分布时,样本均值也满足正态分布(抽样分布是样本均值的分布,此处是正态分布)样本均值的均值与方差和总体参数之间的关系:

如上式,若得到一次实验的样本,样本容量就是n,计算所有样本会得到一次实验的样本均值,多次实验会得到多次实验的样本均值,假如有600次实验则会得到600个样本均值,再对这600个样本均值进行计算,计算出样本均值的均值和方差,这个样本均值的均值和方差与总体参数满足上式,根据上式关系即可估算出总体均值和总体方差。

当总体不是正态分布,可利用中心极限定理估计出总体参数:

中心极限定理:n足够大则认为样本呈正态分布,因此其样本均数也呈正态分布。

如今,为了精确计算样本均数,存在三种常见的抽样分布(抽样分布是指统计量的分布,以上例为例,就是样本均值的分布),这里的计算是为了得到右边的参数部分。

最为常用的是t分布,它的特点是对于样本含量没有要求:

化简之后是下式:

t分布的期望和方差如下:

由以上期望和方差可知,t分布只与自由度有关系,与其他无关。

使用t分布作为抽样分布而不使用正态分布的理由是:对于大样本,当n足够大时,t分布和标准正态分布的曲线几乎重合;对于小样本,此时自由度为n-1,并不等同于正态分布(其实若样本容量比较小比如25,样本均值分布很大可能不是正态分布),而t分布在此时因为自由度的控制,使得曲线并非正态分布,比较符合客观事实,所以可以控制系统误差,比标准正态分布更准确。

若不使用t分布,则可以先使用特定数(比如30为界限,此处具体值依据具体问题)判断是大样本或是小样本,再选择分布:

当总体分布为正态分布,则样本指标的分布也 采用正态分布,即用Z分布来进行统计推断。

当总体分布为二项分布(n很大,P有很小), 即当np小于等于5 时,则样本指标的分布采用泊松分布来进行统计推断。反之,当np大于等于5时,可用正态分布近似代替二项分布,则样本指标的分布采用正态分布来进行统计推断。

当小样本时:

以上是通过多个样本得到多个多个统计量再计算均值的方式,后面推出了一个样本便估计参数的方法。

目标是估计出尖值,即估计量:

参数估计可以使用点估计和区间估计,点估计完成了参数估计的从无到有,区间估计完成了参数估计的精细化:

矩估计:提出了用原点矩的方法建立样本矩与总体矩的关系

右边是总体矩左边是样本矩:eg,一阶样本矩等于参数均值。所以矩估计的思路是:将总体(含有未知参数的式子,该式子就是由之前学过的不同分布推导或者通用求积分得到)和样本(含有统计量的式子,一般就是数值一个个加或做完处理后一个个加,非常初级)联系起来的桥梁是矩估计

特点:无论总体是出于何种分布(总体矩的表达形式有所不同),最终估计出来的总体参数(仅均值和方差)的表达式完全一致。

最大似然估计是用一组样本估计出总体参数的另一种方法,它的过程是首先建立似然函数,该似然函数是在通过样本得知总体分布之后,结合样本数n,建立在n个样本同时满足某分布之上,得到它们的联合概率密度,取对数(此步骤是为了简化计算,若有其他可化简的方法皆可,它并不参与最大似然的思想)最后对似然函数求最大值(即若估计一个参数求一阶导,和估计两个参数求一阶导和二阶导)。

通过比较矩估计的和最大似然估计的参数,可以得知这一统计量和矩估计量估计出的量是不一定是一样的(但对于总体是正态分布时,估计出的参数是一样的)

经验:先最大似然,再矩估计

在通过以上方式估计参数之后,通过加入估计参数的评判标准,判断何种参数最为可靠:

无偏性:估计的参数满足抽样分布,主要看与集中趋势的比较:若估计的参数是位于所有估计的参数中的集中区域,则认为给估计的参数是无偏的,否则就是有偏的,有偏常常是系统性错误造成的。

抽样分布|t分布|中心极限定理|点估计|矩估计|最大似然法|的更多相关文章

  1. 估计量|估计值|矩估计|最大似然估计|无偏性|无偏化|有效性|置信区间|枢轴量|似然函数|伯努利大数定理|t分布|单侧置信区间|抽样函数|

    第二章 置信区间估计 估计量和估计值的写法? 估计值希腊字母上边有一个hat 点估计中矩估计的原理? 用样本矩来估计总体矩,用样本矩的连续函数来估计总体矩的连续函数,这种估计法称为矩估计法.Eg:如果 ...

  2. 中心极限定理|z分布|t分布|卡方分布

    生物统计学 抽样分布:n个样本会得到n个统计量,将这n个统计量作为总体,该总体的分布即是抽样分布 根据辛钦大数定律,从一个非正态分布的总体中抽取的含量主n的样本,当n充分大时,样本平均数渐近服从正态分 ...

  3. 中心极限定理(Central Limit Theorem)

    中心极限定理:每次从总体中抽取容量为n的简单随机样本,这样抽取很多次后,如果样本容量很大,样本均值的抽样分布近似服从正态分布(期望为  ,标准差为 ). (注:总体数据需独立同分布) 那么样本容量n应 ...

  4. BZOJ.4909.[SDOI2017]龙与地下城(正态分布 中心极限定理 FFT Simpson积分)

    BZOJ 洛谷 https://www.luogu.org/blog/ShadowassIIXVIIIIV/solution-p3779# 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它 ...

  5. 中心极限定理(为什么y服从高斯分布)

    因为每一条数据都服从IID原则: 根据中心极限定理,当数据增加的时候,样本均值的分布慢慢变成正态分布 不管分布式什么分布,累加起来都是高斯分布 As sum increases, sum of non ...

  6. 中心极限定理 | central limit theorem | 大数定律 | law of large numbers

    每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?

  7. 中心极限定理&&正态分布 随想

    0-前言 笔者本来周末约好朋友出去骑行,不料天公不作美!哎,闲来无事来到了实验室,本来打算看看<天天向上>,而这一期又实在不好看(偶像剧).只好来做做一些小实验,脑海里突然想到“正态分布“ ...

  8. 【概率论】6-3:中心极限定理(The Central Limit Theorem)

    title: [概率论]6-3:中心极限定理(The Central Limit Theorem) categories: - Mathematic - Probability keywords: - ...

  9. ubuntu之路——day8.4 Adam自适应矩估计算法

    基本上讲,Adam就是将day8.2提到的momentum动量梯度下降法和day8.3提到的RMSprop算法相结合的优化算法 首先初始化 SdW = 0 Sdb = 0 VdW = 0 Vdb = ...

随机推荐

  1. 计算机网络(2): http的基础上用SSL或TSL加密

    加密过程具体TCP实现 步骤 1 : 客户端通过发送Client Hello报文开始SSL通信(这里是在TCP的三次握手已经完成的基础上进行的).报文中包含客户端支持的SSL的指定版本.加密组件列表( ...

  2. 条款02:尽量以const,enum,inline替换#define

    目录 1. 总结 2. 使用const常量或enum替换宏常量 class外部的常量指针 class专属常量 1. 总结 对于单纯常量,最好以const常量或enum替换#define 对于宏代码段, ...

  3. EL表达式和JSTL(一)

    一. 初始JavaBean 在软件开发时,有些数据时经常要用到的,为了方便进行移植,Sun公司提出了一种JavaBean技术,使用JavaBean对这些数据进行封装,做到一次编写,到处开发. Java ...

  4. python加速

    之前一直用 conda版python, 发现可以直接装intel的numpy了. https://software.intel.com/en-us/articles/installing-the-in ...

  5. 面向对象 part7 class

    类的定义 类实际上是个“特殊的函数“,就像能够定义函数表达式和函数声明一样,类语法 有两个组成部分:类表达式和类声明式 类声明 类声明没有提升 静态方法 只有构造函数名可以调用,实例无法使用.常用于应 ...

  6. ae基础一

    1.导入素材2.整理素材3.创建合成1280*720是高清的模式 也是平时都用的格式 HDV/HDTV 720 251920*1080是超清的模式格式是以16:9的格式显示的 电脑电视机都是用这个比例 ...

  7. Tensorflow学习教程------tfrecords数据格式生成与读取

    首先是生成tfrecords格式的数据,具体代码如下: #coding:utf-8 import os import tensorflow as tf from PIL import Image cw ...

  8. Python笔记_第一篇_面向过程_第一部分_5.Python数据类型之集合类型(set)

    集合!Python中的集合数据基本上是为了方便数学计算使用的. 什么是集合? 集合就是“确定的一堆东西”.集合里面的东西叫做元素. 特点:1. 集合里面是没有重复的元素的.           2. ...

  9. sqlalchemy 入门

    ORM技术:Object-Relational Mapping,把关系数据库的表结构映射到对象上. 在Python中,最有名的ORM框架是SQLAlchemy. # 导入: from sqlalche ...

  10. 论文翻译——Deep contextualized word representations

    Abstract We introduce a new type of deep contextualized word representation that models both (1) com ...