(Java实现) 洛谷 P1031 均分纸牌
题目描述
有NN堆纸牌,编号分别为 1,2,…,N1,2,…,N。每堆上有若干张,但纸牌总数必为NN的倍数。可以在任一堆上取若干张纸牌,然后移动。
移牌规则为:在编号为11堆上取的纸牌,只能移到编号为22的堆上;在编号为NN的堆上取的纸牌,只能移到编号为N-1N−1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如N=4N=4,44堆纸牌数分别为:
①99②88③1717④66
移动33次可达到目的:
从 ③ 取44张牌放到 ④ (9,8,13,109,8,13,10)-> 从 ③ 取33张牌放到 ②(9,11,10,109,11,10,10)-> 从 ② 取11张牌放到①(10,10,10,1010,10,10,10)。
输入输出格式
输入格式:
两行
第一行为:NN(NN 堆纸牌,1 \le N \le 1001≤N≤100)
第二行为:A1,A2,A3…
输出格式:
一行:即所有堆均达到相等时的最少移动次数。
输入输出样例
输入样例#1:
4
9 8 17 6
输出样例#1:
3
import java.util.Scanner;
public class junfenzhipai {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
int[] card = new int[N];
int sum = 0;
int count = 0;//移动次数
int v = 0;//平均数
for (int i = 0; i < N; i++) {
card[i] = sc.nextInt();
sum += card[i];
}
v = sum/N;
for (int i = 0; i < card.length; i++) {
if (card[i] - v != 0) {
card[i+1] = card[i+1] + card[i] - v ;
count++;
}
}
System.out.println(count);
}
}
(Java实现) 洛谷 P1031 均分纸牌的更多相关文章
- 洛谷P1031 均分纸牌
P1031 均分纸牌 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌 ...
- 洛谷 P1031 均分纸牌
P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪 ...
- 洛谷 P1031 均分纸牌 Label:续命模拟QAQ
题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...
- 洛谷 P1031 均分纸牌【交叉模拟】
题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...
- [NOIP2002] 提高组 洛谷P1031 均分纸牌
题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...
- 洛谷——P1031 均分纸牌
https://www.luogu.org/problem/show?pid=1031#sub 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以 ...
- 洛谷P1368 均分纸牌(加强版)
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
- 洛谷P1368 均分纸牌(加强版) [2017年6月计划 数论14]
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
- 【洛谷p1031】均分纸牌
[博客园的第一条随笔,值得纪念一下] 均分纸牌[传送门] 洛谷上的算法标签是 这道题是一道贪心题,过了四遍才过(蒟蒻有点废) 第一遍的时候考虑的非常少,只想到了求出平均数→求差值→从左往右加差值: 这 ...
随机推荐
- hadoop文件系统常用操作
详细可参考hadoop官方文档filesystem shell一节 使用hadoop离不开文件系统,比如hdfs,我们可能需要从hdfs中读取文件作为输入,并将输出保存到hdfs上某个文件中 首先创建 ...
- SVN 报错问题
svn: error: The subversion command line tools are no longer provided by Xcode ```. ## 问题分析 由于Mac绝大部分 ...
- Altera特殊管脚的使用
- [zoj3632]线段树的应用
题意:f[i] = min(f[i+L]~f[i+R]) + x,计算f数组.从大到小计算即可,用线段树维护一下. #pragma comment(linker, "/STACK:10240 ...
- 解决:com.mysql.cj.jdbc.exceptions.CommunicationsException: Communications link failure(真实有效)
数据库连接失败 一.例如我在SpringBoot项目中使用了阿里的数据库连接池Driud. 有次在启动的时候,会报这样的错: Caused by: com.mysql.cj.exceptions.CJ ...
- NetCore项目实战篇06---服务注册与发现之consul
至此,我们的解决方案中新建了三个项目,网关(Zhengwei.Gateway).认证中心(Zhengwei.Identity)和用户资源API(Zhengwei.Use.Api).当要访问用户API的 ...
- 疑问_网址参数不同的时候改如何选择_MySQL_芬兰站
豹子安全-注入工具-疑问_网址参数不同的时候改如何选择_MySQL_芬兰站_kouvolankipparit.fi_基于联合查询_20200416 www.leosec.net 请看下列GIF视频:
- Ubuntu 18.04使用OpenSSL自签证书(证书支持多IP及多域名,谷歌浏览器无警告)
前言 在HTTPS数据传输的过程中,需要用SSL/TLS对数据进行加密和解密,以保证网络传输过程中数据的机密性.HTTPS协议可以大致分为两个部分:其一是协商密钥,首先当Client向Web Serv ...
- 复习webpack的常用loader
今天复习了下webpack的常用loaders,其实习惯ES6开发的话,webpack的config.js基础配置应该是比较固定: 首先是JS,我们ES6要转为ES5,需要用到babel转码: 1. ...
- 必须使用角色管理工具 安装或配置microsoft.net framework 3.5
windows server 2008安装sql server 2012后报错,要求安装microsoft.net framework 3.5 sp1 但安装时提示,必须使用角色管理工具 安装或配置m ...