题意:给一棵树的边标上0或1,求以节点i为源点,其它点到i的唯一路径上的1的边数不超过1条的方案数,输出所有i的答案。

思路:令f[i]表示以节点i为源点,只考虑子树i时的方案数,ans[i]为最后答案,fa[i]为i的父亲,则不难得出以下转移方程:

f[i] = ∏(1 + f[v]),v是i的儿子      ans[i] = f[i] * (1 + ans[fa[i]] / (1 + f[i]))

由于除法取模运算的存在,不得不对1+f[i]求逆元,但1+f[i]可能等于MOD,于是这种情况下结果就是错的了,不能用这个公式求。

令g[i] = ans[fa[i]] / (1 + f[i]),注意到g[i]实际上等于∏(1 + f[v]) * g[fa[i]],v是i的兄弟,于是可以增加一个前缀积数组和一个后缀积数组用来得到∏(1 + f[v]),就不难得到g[i]和最后的答案了。

 #pragma comment(linker, "/STACK:10240000,10240000")

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <map>
#include <queue>
#include <deque>
#include <cmath>
#include <vector>
#include <ctime>
#include <cctype>
#include <set>
#include <bitset>
#include <functional>
#include <numeric>
#include <stdexcept>
#include <utility> using namespace std; #define mem0(a) memset(a, 0, sizeof(a))
#define mem_1(a) memset(a, -1, sizeof(a))
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define define_m int m = (l + r) >> 1
#define rep_up0(a, b) for (int a = 0; a < (b); a++)
#define rep_up1(a, b) for (int a = 1; a <= (b); a++)
#define rep_down0(a, b) for (int a = b - 1; a >= 0; a--)
#define rep_down1(a, b) for (int a = b; a > 0; a--)
#define all(a) (a).begin(), (a).end()
#define lowbit(x) ((x) & (-(x)))
#define constructInt5(name, a, b, c, d, e) name(int a = 0, int b = 0, int c = 0, int d = 0, int e = 0): a(a), b(b), c(c), d(d), e(e) {}
#define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {}
#define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {}
#define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {}
#define pchr(a) putchar(a)
#define pstr(a) printf("%s", a)
#define sstr(a) scanf("%s", a)
#define sint(a) scanf("%d", &a)
#define sint2(a, b) scanf("%d%d", &a, &b)
#define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c)
#define pint(a) printf("%d\n", a)
#define test_print1(a) cout << "var1 = " << a << endl
#define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl
#define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl
#define mp(a, b) make_pair(a, b)
#define pb(a) push_back(a) typedef long long LL;
typedef pair<int, int> pii;
typedef vector<int> vi; const int dx[] = {, , -, , , , -, -};
const int dy[] = {-, , , , , -, , - };
const int maxn = 2e5 + ;
const int md = 1e9 + ;
const int inf = 1e9 + ;
const LL inf_L = 1e18 + ;
const double pi = acos(-1.0);
const double eps = 1e-; template<class T>T gcd(T a, T b){return b==?a:gcd(b,a%b);}
template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;}
template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;}
template<class T>T condition(bool f, T a, T b){return f?a:b;}
template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];}
int make_id(int x, int y, int n) { return x * n + y; } struct Graph {
vector<vector<int> > G;
void clear() { G.clear(); }
void resize(int n) { G.resize(n + ); }
void add(int u, int v) { G[u].push_back(v); }
vector<int> & operator [] (int u) { return G[u]; }
};
Graph G, pre, suf;
int fa[maxn], f[maxn], ans[maxn], id[maxn], g[maxn]; void dfs(int n) {
f[n] = ;
int sz = G[n].size();
rep_up0(i, sz) {
int v = G[n][i];
dfs(v);
f[n] = (LL)f[n] * ( + f[v]) % md;
}
} void getAns(int n) {
int sz = G[n].size();
int fn = fa[n], in = id[n];
pre[n].resize(sz + );
suf[n].resize(sz + );
pre[n][] = suf[n][sz + ] = ;
if (n == ) {
ans[n] = f[n];
g[n] = ;
}
else {
g[n] = ( + (LL)pre[fn][in - ] % md * suf[fn][in + ] % md * g[fn]) % md;
ans[n] = (LL)f[n] * g[n] % md;
}
rep_up0(i, sz) {
int v = G[n][i];
pre[n][i + ] = (LL)pre[n][i] * ( + f[v]) % md;
}
rep_down0(i, sz) {
int v = G[n][i];
suf[n][i + ] = (LL)suf[n][i + ] * ( + f[v])% md;
}
rep_up0(i, sz) {
int v = G[n][i];
getAns(v);
}
} int main() {
//freopen("in.txt", "r", stdin);
int n;
cin >> n;
G.resize(n);
pre.resize(n);
suf.resize(n);
for (int i = ; i <= n; i ++) {
int x;
sint(x);
G.add(x, i);
fa[i] = x;
id[i] = G[x].size();
}
dfs();
getAns();
rep_up1(i, n) printf("%d%c", ans[i], i == n? '\n' : ' ');
return ;
}

[codeforces-543-D div1]树型DP的更多相关文章

  1. Codeforces 23E Tree(树型DP)

    题目链接 Tree $dp[x][i]$表示以x为根的子树中x所属的连通快大小为i的时候 答案最大值 用$dp[x][j]$ * $dp[y][k]$ 来更新$dp[x][j + k]$. (听高手说 ...

  2. Codeforces 581F Zublicanes and Mumocrates(树型DP)

    题目链接  Round 322 Problem F 题意  给定一棵树,保证叶子结点个数为$2$(也就是度数为$1$的结点),现在要把所有的点染色(黑或白) 要求一半叶子结点的颜色为白,一半叶子结点的 ...

  3. Codeforces 149D Coloring Brackets(树型DP)

    题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...

  4. 【题解】codeforces 219D Choosing Capital for Treeland 树型dp

    题目描述 Treeland国有n个城市,这n个城市连成了一颗树,有n-1条道路连接了所有城市.每条道路只能单向通行.现在政府需要决定选择哪个城市为首都.假如城市i成为了首都,那么为了使首都能到达任意一 ...

  5. POJ3659 Cell Phone Network(树上最小支配集:树型DP)

    题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...

  6. POJ 3342 - Party at Hali-Bula 树型DP+最优解唯一性判断

    好久没写树型dp了...以前都是先找到叶子节点.用队列维护来做的...这次学着vector动态数组+DFS回朔的方法..感觉思路更加的清晰... 关于题目的第一问...能邀请到的最多人数..so ea ...

  7. 【XSY1905】【XSY2761】新访问计划 二分 树型DP

    题目描述 给你一棵树,你要从\(1\)号点出发,经过这棵树的每条边至少一次,最后回到\(1\)号点,经过一条边要花费\(w_i\)的时间. 你还可以乘车,从一个点取另一个点,需要花费\(c\)的时间. ...

  8. 洛谷P3354 Riv河流 [IOI2005] 树型dp

    正解:树型dp 解题报告: 传送门! 简要题意:有棵树,每个节点有个权值w,要求选k个节点,最大化∑dis*w,其中如果某个节点到根的路径上选了别的节点,dis指的是到达那个节点的距离 首先这个一看就 ...

  9. 【POJ 3140】 Contestants Division(树型dp)

    id=3140">[POJ 3140] Contestants Division(树型dp) Time Limit: 2000MS   Memory Limit: 65536K Tot ...

随机推荐

  1. 嵌入css方式

    总体见思维导图 . 嵌入css方式 1 内联式 内联式css样式表就是把css代码直接写在现有的HTML标签中,如下面代码: <p style="color:red"> ...

  2. SpringCloud(七)超时、重试

    一.Ribbon(单独配置) 可以通过ribbon.xx来进行全局配置.也可以通过服务名.ribbon.xx来对指定服务配置 全局配置: ribbon: ConnectTimeout: 3000 #连 ...

  3. 如何使用IE9浏览器自带开发人员工具捕获网页请求

    我们在通过浏览器访问一个网页的时候,有时候会遇到页面不能正常显示,图片不能正常加载的问题. 如果我们需要知道浏览器打开该网页时,网页中每个元素的加载情况.这时,我们便可以借助浏览器自带开发人员工具,来 ...

  4. Spring基于注解@Required配置

    基于注解的配置 从 Spring 2.5 开始就可以使用注解来配置依赖注入.而不是采用 XML 来描述一个 bean 连线,你可以使用相关类,方法或字段声明的注解,将 bean 配置移动到组件类本身. ...

  5. python之实现图像的手绘效果

    https://blog.csdn.net/riba2534/article/details/74152285 原图: b: c: d: 最终图:

  6. Mac安装Nginx、Mysql、PHP、Redis

    安装xcode命令行工具的命令 xcode-select --install   安装homebrew: ruby -e "$(curl -fsSL https://raw.githubus ...

  7. vue2.x学习笔记(三十二)

    接着前面的内容:https://www.cnblogs.com/yanggb/p/12684060.html. 深入响应式原理 vue最独特的特性之一,是其非侵入式(耦合度低)的响应式系统:数据模型仅 ...

  8. Tomcat7 启动慢的问题解决

    [问题] 由于上面标记部分,导致启动耗时将近160s,不能忍! [原因] 此于jvm环境配置有关,请打开jvm安装目录中jre/lib/security/java.security文件,找到secur ...

  9. 虚拟化VMware之虚拟机备份(1)

    之虚拟机备份() 模版:是一种开放,公用.安全的虚拟机压缩格式,通常使用的是扩展名为.ova可以在多个主流虚拟化平台下进行操作 是和 通过技术协作推出的基于磁盘的备份和恢复的新一代解决方案,可靠且易部 ...

  10. Cobbler自动装机试验

    Cobbler自动装机简介:Cobbler是一个使用Python开发的开源项目,通过将部署系统所涉及的所有服务集中在一起,来提供一个全自动的批量快速建立Linux系统的网络安装环境.Cobbler提供 ...