快AFO了才第一次写二次剩余的题……

显然应该将Fn写成通项公式(具体是什么写起来不方便而且大家也都知道),设t=((1+√5)/2)n,T=√5N,然后可以得到t-(-1)t/t=√5N,两边同时乘t,移项,得到t2-√5Nt-(-1)n=0。分别讨论n是奇数或偶数的情况,通过求根公式求t,写个二次剩余即可。

#include<bits/stdc++.h>
using namespace std;
const int sq5=,inv2=5e8+,mod=1e9+,inf=0x7fffffff;
int n,w,ans=inf;
map<int,int>mp;
struct com{
int x,y;
com operator*(const com&a)
{return(com){(1ll*x*a.x+1ll*y*a.y%mod*w)%mod,(1ll*x*a.y+1ll*y*a.x)%mod};}
};
int qpow(int a,int b)
{
int ret=;
while(b)
{
if(b&)ret=1ll*ret*a%mod;
a=1ll*a*a%mod,b>>=;
}
return ret;
}
int Sqrt(int n)
{
if(qpow(n,mod/)!=)return ;
int a=;
while(qpow((1ll*a*a%mod-mod-n)%mod,mod/)==)a=rand();
com x=(com){a,mod-},ans=(com){,};
int y=inv2;
w=(1ll*a*a%mod+mod-n)%mod;
while(y)
{
if(y&)ans=ans*x;
x=x*x,y>>=;
}
return ans.x;
}
int BSGS(int t,int n)
{
int m=ceil(sqrt(mod)),inv=qpow(t,mod-),v=n;
mp.clear(),mp[n]=mod;
for(int i=;i<m;i++)v=1ll*v*inv%mod,mp[v]=mp[v]?mp[v]:i;
if(mp[])return mp[]%mod;
v=,t=qpow(t,m);
for(int i=;i<=m;i++)
{
v=1ll*v*t%mod;
if(mp[v])return(i*m+mp[v])%mod;
}
return -;
}
int main()
{
scanf("%d",&n);
int t=1ll*(sq5+)*inv2%mod,T=1ll*sq5*n%mod,ans=inf;
int r0=Sqrt(5ll*n*n%mod+),r1=Sqrt(5ll*n*n%mod-),x;
if(r0)
{
x=BSGS(t,1ll*(T+r0)*inv2%mod);
if(x>-&&x%==)ans=min(ans,x);
x=BSGS(t,1ll*(T+mod-r0)*inv2%mod);
if(x>-&&x%==)ans=min(ans,x);
}
if(r1)
{
x=BSGS(t,1ll*(T+r1)*inv2%mod);
if(x>-&&x%)ans=min(ans,x);
x=BSGS(t,1ll*(T+mod-r1)*inv2%mod);
if(x>-&&x%)ans=min(ans,x);
}
if(ans==inf)puts("-1");else printf("%d",ans);
}

bzoj5104 Fib数列(BSGS+二次剩余)的更多相关文章

  1. BZOJ5104 Fib数列(二次剩余+BSGS)

    5在1e9+9下有二次剩余,那么fib的通项公式就有用了. 已知Fn,求n.注意到[(1+√5)/2]·[(1-√5)/2]=-1,于是换元,设t=[(1+√5)/2]n,原式变为√5·Fn=t-(- ...

  2. bzoj5104: Fib数列

    Description Fib数列为1,1,2,3,5,8... 求在Mod10^9+9的意义下,数字N在Fib数列中出现在哪个位置 无解输出-1 Input 一行,一个数字N,N < = 10 ...

  3. BZOJ5104 Fib数列 二次剩余、BSGS

    传送门 发现只有通项公式可以解决考虑通项公式 \(F_n = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^ ...

  4. BZOJ 5104 Fib数列(二次剩余+BSGS)

    斐波那契数列的通项: \[\frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})-(\frac{1-\sqrt{5}}{2}))\] 设T=\(\sqrt{5}*N\),\ ...

  5. bzoj5118 Fib数列2 二次剩余+矩阵快速幂

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5118 题解 这个题一看就是不可做的样子. 求斐波那契数列的第 \(n\) 项,\(n \leq ...

  6. BZOJ5118: Fib数列2(二次剩余)

    题意 题目链接 题目链接 一种做法是直接用欧拉降幂算出\(2^p \pmod{p - 1}\)然后矩阵快速幂. 但是今天学习了一下二次剩余,也可以用通项公式+二次剩余做. 就是我们猜想\(5\)在这个 ...

  7. 【BZOJ5104】Fib数列(BSGS,二次剩余)

    [BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\ ...

  8. @bzoj - 5104@ Fib数列

    目录 @description@ @solution@ @accepted code@ @details@ @description@ Fib数列为1,1,2,3,5,8... 求在Mod10^9+9 ...

  9. FIB数列

    斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+ ...

随机推荐

  1. n以内的素数

    /* 问题描述: 质数又称素数.一个大于1的自然数,除了1和它自身外, 不能被其他自然数整除的数叫做质数: 问题分析: 素数只能被1和自身整除的数.判断一个数是不是素数, 是用2和这个数之间的所有的数 ...

  2. (5)opencv的基础操作和矩阵的掩模操作

    不懂的,可以简单,看看这个网址:https://blog.csdn.net/xiongwen_li/article/details/78503491 图片放到了桌面,所以,图片的路径就是桌面了,剩余的 ...

  3. 吴裕雄--天生自然 PHP开发学习:类型比较

    <?php if(42 == "42") { echo '1.值相等'; } echo PHP_EOL; // 换行符 if(42 === "42") { ...

  4. spring_mybatis :整合

    第一步:导入相关架包(使用maven构建项目) 在pom.xml文件中导入相关依赖 1.Junit测试架包 <dependency> <groupId>junit</gr ...

  5. Socket通讯的简单用法

    1.客户端 package Thread; import java.io.BufferedReader; import java.io.IOException; import java.io.Inpu ...

  6. BZOJ 2285 [Sdoi2011]保密

    题解: 求比值用分数规划,单个求太慢了套整体二分 然后求二分图最小割 // luogu-judger-enable-o2 #include<iostream> #include<cs ...

  7. arp攻击 (可查看同一局域网他人手机照片)

    国家法律一定要遵守,知识要用在对的地方. 本贴只为了和大家交流学习,请勿用在其他地方,损害任何人的利益. 今天我,来说一下arp攻击的原理和教程 原理什么的还是自行百度好,因为专业的说明是严谨而又经得 ...

  8. C# 串口编程,扫码枪使用

    一.串口通信简介 串行接口(串口)是一种可以将接受来自CPU的并行数据字符转换为连续的串行数据流发送出去,同时可将接受的串行数据流转换为并行的数据字符供给CPU的器件.一般完成这种功能的电路,我们称为 ...

  9. 一本通1402 Vigenère密码

    [题目描述]6世纪法国外交家Blaise de Vigenère设计了一种多表密码加密算法——Vigenère密码.Vigenère密码的加密解密算法简单易用,且破译难度比较高,曾在美国南北战争中为南 ...

  10. 应用层上的协议HTTP

    HTTP http://www.runoob.com/http/http-tutorial.html https://www.cnblogs.com/houfee/articles/9161847.h ...