一、在STM32中,有五个时钟源,为HSIHSELSILSEPLL

HSI是高速内部时钟,RC振荡器,频率为8MHz。

HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

LSI是低速内部时钟,RC振荡器,频率为40kHz。

LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

二、在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法:如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:

①对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
②对于少于100脚的产品,有2种接法:第1种:OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能;第2种:分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面)节省2个外部电阻。

三、用HSE时钟,程序设置时钟参数流程
01、将RCC寄存器重新设置为默认值   RCC_DeInit;
02、打开外部高速时钟晶振HSE    RCC_HSEConfig(RCC_HSE_ON);
03、等待外部高速时钟晶振工作    HSEStartUpStatus = RCC_WaitForHSEStartUp();
04、设置AHB时钟         RCC_HCLKConfig;
05、设置高速AHB时钟     RCC_PCLK2Config;
06、设置低速速AHB时钟   RCC_PCLK1Config;
07、设置PLL              RCC_PLLConfig;
08、打开PLL              RCC_PLLCmd(ENABLE);
09、等待PLL工作   while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟        RCC_SYSCLKConfig;
11、判断是否PLL是系统时钟     while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟    RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

四、下面是STM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)

/*******************************************************************************

* Function Name  : RCC_Configuration

* Description    :  RCC配置(使用外部8MHz晶振)

* Input            : 无

* Output         : 无

* Return         : 无

*******************************************************************************/

void RCC_Configuration(void)

{

/*将外设RCC寄存器重设为缺省值*/

RCC_DeInit();

/*设置外部高速晶振(HSE)*/

RCC_HSEConfig(RCC_HSE_ON);   //RCC_HSE_ON——HSE晶振打开(ON)

/*等待HSE起振*/

HSEStartUpStatus = RCC_WaitForHSEStartUp();

if(HSEStartUpStatus == SUCCESS)        //SUCCESS:HSE晶振稳定且就绪

{

/*设置AHB时钟(HCLK)*/

RCC_HCLKConfig(RCC_SYSCLK_Div1);  //RCC_SYSCLK_Div1——AHB时钟= 系统时钟

/* 设置高速AHB时钟(PCLK2)*/

RCC_PCLK2Config(RCC_HCLK_Div1);   //RCC_HCLK_Div1——APB2时钟= HCLK

/*设置低速AHB时钟(PCLK1)*/

RCC_PCLK1Config(RCC_HCLK_Div2);   //RCC_HCLK_Div2——APB1时钟= HCLK / 2

/*设置FLASH存储器延时时钟周期数*/

FLASH_SetLatency(FLASH_Latency_2);    //FLASH_Latency_2  2延时周期

/*选择FLASH预取指缓存的模式*/

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);       // 预取指缓存使能

/*设置PLL时钟源及倍频系数*/

RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

// PLL的输入时钟= HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9

/*使能PLL */

RCC_PLLCmd(ENABLE);

/*检查指定的RCC标志位(PLL准备好标志)设置与否*/

while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)

{

}

/*设置系统时钟(SYSCLK)*/

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

//RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟

/* PLL返回用作系统时钟的时钟源*/

while(RCC_GetSYSCLKSource() != 0x08)        //0x08:PLL作为系统时钟

{

}

}

/*使能或者失能APB2外设时钟*/

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |

RCC_APB2Periph_GPIOC , ENABLE);

//RCC_APB2Periph_GPIOA    GPIOA时钟

//RCC_APB2Periph_GPIOB    GPIOB时钟

//RCC_APB2Periph_GPIOC    GPIOC时钟

//RCC_APB2Periph_GPIOD    GPIOD时钟

}

五、时钟频率

STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。目前TI的M3系列芯片最高频率可以达到80M。

在stm32固件库3.0中对时钟频率的选择进行了大大的简化,原先的一大堆操作都在后台进行。系统给出的函数为SystemInit()。但在调用前还需要进行一些宏定义的设置,具体的设置在system_stm32f10x.c文件中。

文件开头就有一个这样的定义: 
//#define SYSCLK_FREQ_HSE    HSE_Value 
//#define SYSCLK_FREQ_20MHz 20000000 
//#define SYSCLK_FREQ_36MHz 36000000 
//#define SYSCLK_FREQ_48MHz 48000000 
//#define SYSCLK_FREQ_56MHz 56000000 
#define SYSCLK_FREQ_72MHz 72000000

ST 官方推荐的外接晶振是 8M,所以库函数的设置都是假定你的硬件已经接了 8M 晶振来运算的.以上东西就是默认晶振 8M 的时候,推荐的 CPU 频率选择.在这里选择了:
#define SYSCLK_FREQ_72MHz 72000000 
也就是103系列能跑到的最大值72M

然后这个 C文件继续往下看 
#elif defined SYSCLK_FREQ_72MHz 
const uint32_t SystemFrequency         = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_AHBClk = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_APB1Clk = (SYSCLK_FREQ_72MHz/2);
const uint32_t SystemFrequency_APB2Clk = SYSCLK_FREQ_72MHz;

这就是在定义了CPU跑72M的时候,各个系统的速度了.他们分别是:硬件频率,系统时钟,AHB总线频率,APB1总线频率,APB2总线频率.再往下看,看到这个了: 
#elif defined SYSCLK_FREQ_72MHz 
static void SetSysClockTo72(void);

这就是定义 72M 的时候,设置时钟的函数.这个函数被 SetSysClock ()函数调用,而
SetSysClock ()函数则是被 SystemInit()函数调用.最后 SystemInit()函数,就是被你调用的了

所以设置系统时钟的流程就是: 
首先用户程序调用 SystemInit()函数,这是一个库函数,然后 SystemInit()函数里面,进行了一些寄存器必要的初始化后,就调用
SetSysClock()函数. SetSysClock()函数根据那个#define SYSCLK_FREQ_72MHz 72000000
的宏定义,知道了要调用SetSysClockTo72()这个函数,于是,就一堆麻烦而复杂的设置~!@#$%^然后,CPU跑起来了,而且速度是
72M. 虽然说的有点累赘,但大家只需要知道,用户要设置频率,程序中就做的就两个事情:

第一个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000 
第二个:调用SystemInit()

转载自:https://blog.csdn.net/kevinhg/article/details/17517117

STM32时钟配置方法的更多相关文章

  1. STM32时钟配置方法详解

      一.在STM32中,有五个时钟源,为HSI.HSE.LSI.LSE.PLL. ①HSI是高速内部时钟,RC振荡器,频率为8MHz. ②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源, ...

  2. stm32时钟配置总结

    stm32时钟配置时钟源: 1,HSE(高速外部时钟)即常见的外接8M晶振方案: 2,HSI(高速内部时钟) 即8M内部振荡时钟方案: 3,LSE(低速外部时钟)即常见的32.768Khz晶振方案: ...

  3. stm32 时钟配置——外部时钟倍频、内部时钟倍频 【worldsing笔记】

    stm32可选的时钟源 在STM32中,可以用内部时钟,也可以用外部时钟,在要求进度高的应用场合最好用外部晶体震荡器,内部时钟存在一定的精度误差. 准确的来说有4个时钟源可以选分别是HSI.LSI.H ...

  4. STM32 时钟配置的坑

    今天在调试公司的一款产品的时候发现8M的晶振用完了,于是找了一个16M的替代 坑爹的就在这里,明明已经把时钟按照时钟树配置好了,但是串口等外设一直无法正常工作 折腾了一下午,终于发现这位老兄的文章ht ...

  5. STM32的时钟配置随笔

    以前使用STM32都是使用库函数开发,最近心血来潮想要使用寄存器来试试手感,于是乎便在工作之余研究了一下STM32F4的时钟配置,在此将经历过程写下来作为锻炼,同时也供和我一样的新手参考,如有错误或者 ...

  6. STM32F4系统时钟配置及描述

    STM32F4系统时钟配置及描述 stm32f407时钟配置方法(感觉很好,分享一下) STM32F4_RCC系统时钟配置及描述 STM32F4时钟设置分析 stm32f4 - 时钟树分析配置

  7. Cotex-M3内核STM32F10XX系列时钟及其配置方法

    一.背景 最近做个项目,需要使用STM32,还是以前一样的观点,时钟就是MCU心脏,供血即时钟频率输出,想要弄明白一个MCU,时钟是一个非常好的切入点.言归正传,网上已经有太多大神详述过STM32的详 ...

  8. Cotex-M3内核LPC17xx系列时钟及其配置方法

    一.背景: 最近正在接手一个项目,核心芯片既是LPC17XX系列MCU,内核为ARM的Cotex-M3内核. 想要玩转一个MCU,就一定得搞定其时钟! 时钟对MCU而言,就好比人类的心脏.由其给AHB ...

  9. STM32时钟系统的配置寄存器和源码分析

    一.时钟系统 概述 时钟是单片机运行的基础,时钟信号推动单片机内各个部分执行相应的指令,时钟系统就是CPU的脉搏,决定cpu速率. STM32有多个时钟来源的选择,为什么 STM32 要有多个时钟源呢 ...

随机推荐

  1. chap1-HttpRequest测试类

    # HttpRequest测试类, 封装请求方法 import requests class HttpRequest: def http_request(self, url, method, data ...

  2. MongoDB的初级安装和使用

    对于非关系型数据库,很多人不是很清楚,我也是作为新手慢慢摸索, 外网地址下载贼慢:我烦放在自己的百度网盘里 软件链接:https://pan.baidu.com/s/1A7h4VOfvm8N2gnlJ ...

  3. Ionic3学习笔记(十六)上传头像至图床

    本文为原创文章,转载请标明出处 个人做的开源 Demo 登录注册模块采用的是 Wilddog 野狗通讯云的身份认证服务,不得不说各方面和 Google 收购的 Firebase 很像,十分简单易用.其 ...

  4. Vuex安装使用

    vuex是以插件的方式存在的. 安装:打开项目的根目录,即package.json所在目录,执行以下命令: npm install vuex --save-dev 背景:小型应用里的每个组件维护着自有 ...

  5. MyBatis学习总结之一对多映射

    1.首先创建2张表:students 和grades create table grades( gid ) primary key, gname varchar() ); create table s ...

  6. 吴裕雄--天生自然 PYTHON数据分析:基于Keras的CNN分析太空深处寻找系外行星数据

    #We import libraries for linear algebra, graphs, and evaluation of results import numpy as np import ...

  7. OSX编译安装Python3及虚拟开发环境Virtualenv

    0X00.前言 因为工作原因,最近主要做Python开发,刚好电脑系统重装之后所有的东西都需要重新配置.此文主要记录OSX下通过源码编译安装Python3以及安装虚拟开发环境Virtualenv. 0 ...

  8. Zookeeper:fsync超时导致实例异常

    一.问题描述 2019-02-19 08:44左右,实时计算服务重启,报错显示找不到zk集群的leader节点,同时ZooKeeper集群有告警显示连接超时: 指标[连接耗时(ms)=18221]符合 ...

  9. IPC thread写法太晦涩

    主要用到TLS,首次进入gHaveTLS为false,锁保护说明此函数很多其他函数在调用.通过if (pthread_key_create(&gTLS, threadDestructor) ! ...

  10. Linux sed命令实例解析

    最近看project的makefile,又见到了sed的强大编辑能力,在makefile工作之前,通常都是执行脚本或者make menuconfig来配置好各种全局变量.sed活动阶段通常在bash ...