Destroy Walls

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)

Total Submission(s): 1774    Accepted Submission(s): 689

Problem Description

Long times ago, there are beautiful historic walls in the city. These walls divide the city into many parts of area.

Since it was not convenient, the new king wants to destroy some of these walls, so he can arrive anywhere from his castle. We assume that his castle locates at (0.6∗2√,0.6∗3√).

There are n towers in the city, which numbered from 1 to n. The ith's location is (xi,yi). Also, there are m walls connecting the towers. Specifically, the ith wall connects the tower ui and the tower vi(including the endpoint). The cost of destroying the ith wall is wi.

Now the king asks you to help him to divide the city. Firstly, the king wants to destroy as less walls as possible, and in addition, he wants to make the cost least.

The walls only intersect at the endpoint. It is guaranteed that no walls connects the same tower and no 2 walls connects the same pair of towers. Thait is to say, the given graph formed by the walls and towers doesn't contain any multiple edges or self-loops.

Initially, you should tell the king how many walls he should destroy at least to achieve his goal, and the minimal cost under this condition.

Input

There are several test cases.

For each test case:

The first line contains 2 integer n, m.

Then next n lines describe the coordinates of the points.

Each line contains 2 integers xi,yi.

Then m lines follow, the ith line contains 3 integers ui,vi,wi

|xi|,|yi|≤105

3≤n≤100000,1≤m≤200000

1≤ui,vi≤n,ui≠vi,0≤wi≤10000

Output

For each test case outout one line with 2 integers sperate by a space, indicate how many walls the king should destroy at least to achieve his goal, and the minimal cost under this condition.

Sample Input


 

4 4 -1 -1 -1 1 1 1 1 -1 1 2 1 2 3 2 3 4 1 4 1 2

Sample Output


 

1 1

只能说读题很难,我太难了。我给大家画个图解释一下样例。

这个国王被围起来,他要访问它所有的城市,必然要拆遍,不然出不去,就是说拆掉多少遍,使图成为联通的,也就是说不会保留环即可,无论这个国王在哪,这个图只要有环,就不能遍历,所以跟每个点的坐标没有任何关系,直接剔除环中的最小边,但是这样对吗?我们要使剃边花费最小,那么就要使剃边后剩下的无向无环图的边权和最最大,因为剔除环中最小边,不能保证提出的和最小,所以一遍最大生成树。

HDU - 6187 (最大生成树) 最小生成树的更多相关文章

  1. HDU 6187 Destroy Walls (思维,最大生成树)

    HDU 6187 Destroy Walls (思维,最大生成树) Destroy Walls *Time Limit: 8000/4000 MS (Java/Others) Memory Limit ...

  2. HDU 5723 Abandoned country 最小生成树+搜索

    Abandoned country Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  3. HDU 6187 Destroy Walls (对偶图最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6187 题意:有一个V个结点M条边的带边权无向平面图,有一个人在一个区域,要拆一些墙使得他可以到达任意一 ...

  4. HDU 5723 Abandoned country (最小生成树+dfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5723 n个村庄m条双向路,从中要选一些路重建使得村庄直接或间接相连且花费最少,这个问题就是很明显的求最 ...

  5. UVA 1395 苗条的生成树(最小生成树+并查集)

    苗条的生成树 紫书P358 这题最后坑了我20分钟,怎么想都对了啊,为什么就wa了呢,最后才发现,是并查集的编号搞错了. 题目编号从1开始,我并查集编号从0开始 = = 图论这种题真的要记住啊!!题目 ...

  6. hdu 1301 Jungle Roads 最小生成树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1301 The Head Elder of the tropical island of Lagrish ...

  7. HDU 1863 畅通工程(最小生成树,prim)

    题意: 给出图的边和点数,要求最小生成树的代价,注:有些点之间是不可达的,也就是可能有多个连通图.比如4个点,2条边:1-2,3-4. 思路: 如果不能连通所有的点,就输出‘?’.之前以为每个点只要有 ...

  8. HDU 4786 Fibonacci Tree 最小生成树

    Fibonacci Tree 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4786 Description Coach Pang is intere ...

  9. hdu 5723 Abandoned country 最小生成树 期望

    Abandoned country 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5723 Description An abandoned coun ...

随机推荐

  1. AJ学IOS(16)UI之XIB自定义Cell实现团购UI

    AJ分享,必须精品 先看效果图 自定义Cell 本次主要是自定义Cell的学习 实现自定义Cell主要有三种方法:按照使用的频繁度排序: XIB > 纯代码 > StoryBoard XI ...

  2. 复习python的多态,类的内部权限调用 整理

    #多态的用法 class Dii: passclass Aii(Dii): def run(self): print('一号函数已调用')class Bii(Dii): def run(Dii): p ...

  3. 微信群里一道六年级数学题,求阴影面积,那我只能用python代码了

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http ...

  4. Git敏捷开发--stash命令

    save 执行git stash,默认以commit info保存当前的stash信息 当在某个commit下,执行多次stash时,无法友好地区分每个stash的改动.save 命令可以清晰地标识每 ...

  5. 数据挖掘入门系列教程(十)之k-means算法

    简介 这一次我们来讲一下比较轻松简单的数据挖掘的算法--K-Means算法.K-Means算法是一种无监督的聚类算法.什么叫无监督呢?就是对于训练集的数据,在训练的过程中,并没有告诉训练算法某一个数据 ...

  6. Springboot:logback日志管理(九)

    Springboot默认使用的日志框架就是logback 创建自定义的logback-spring.xml放在resources类目录下即可 logback-spring.xml: <?xml ...

  7. python 工具链 包管理工具 pip

    Installation mac下可以采用 brew,easy_install(python自带)等方式安装. centos下可以采用yum,easy_install等方式安装. 但是上面两种方式在系 ...

  8. GC日志分析详解

    点击返回上层目录 原创声明:作者:Arnold.zhao 博客园地址:https://www.cnblogs.com/zh94 GC日志分析详解 以ParallelGC为例,YoungGC日志解释如下 ...

  9. .NET Core 使用MediatR CQRS模式

    前言 CQRS(Command Query Responsibility Segregation)命令查询职责分离模式,它主要从我们业务系统中进行分离出我们(Command 增.删.改)和(Query ...

  10. 0day学习笔记(2)--函数调用

    函数调用过程 调用函数操作 函数参数入栈(在当前函数栈帧),从左至右或从右至左视情况而定 一般为从右至左 mov 地址,参数 的一个操作并不直接pop而是定位到地址将参数传递进去 call offse ...