CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)
Furik and Rubik love playing computer games. Furik has recently found a new game that greatly interested Rubik. The game consists of n parts and to complete each part a player may probably need to complete some other ones. We know that the game can be fully completed, that is, its parts do not form cyclic dependencies.
Rubik has 3 computers, on which he can play this game. All computers are located in different houses. Besides, it has turned out that each part of the game can be completed only on one of these computers. Let's number the computers with integers from 1 to 3. Rubik can perform the following actions:
Complete some part of the game on some computer. Rubik spends exactly 1 hour on completing any part on any computer.
Move from the 1-st computer to the 2-nd one. Rubik spends exactly 1 hour on that.
Move from the 1-st computer to the 3-rd one. Rubik spends exactly 2 hours on that.
Move from the 2-nd computer to the 1-st one. Rubik spends exactly 2 hours on that.
Move from the 2-nd computer to the 3-rd one. Rubik spends exactly 1 hour on that.
Move from the 3-rd computer to the 1-st one. Rubik spends exactly 1 hour on that.
Move from the 3-rd computer to the 2-nd one. Rubik spends exactly 2 hours on that.
Help Rubik to find the minimum number of hours he will need to complete all parts of the game. Initially Rubik can be located at the computer he considers necessary.
Input
The first line contains integer n (1 ≤ n ≤ 200) — the number of game parts. The next line contains n integers, the i-th integer — ci (1 ≤ ci ≤ 3) represents the number of the computer, on which you can complete the game part number i.
Next n lines contain descriptions of game parts. The i-th line first contains integer ki (0 ≤ ki ≤ n - 1), then ki distinct integers ai, j (1 ≤ ai, j ≤ n; ai, j ≠ i) — the numbers of parts to complete before part i.
Numbers on all lines are separated by single spaces. You can assume that the parts of the game are numbered from 1 to n in some way. It is guaranteed that there are no cyclic dependencies between the parts of the game.
Output
On a single line print the answer to the problem.
Examples
Input
1
1
0
Output
1
Input
5
2 2 1 1 3
1 5
2 5 1
2 5 4
1 5
0
Output
7
Note
Note to the second sample: before the beginning of the game the best strategy is to stand by the third computer. First we complete part 5. Then we go to the 1-st computer and complete parts 3 and 4. Then we go to the 2-nd computer and complete parts 1 and 2. In total we get 1+1+2+1+2, which equals 7 hours.
题解:
现在有三个工作站,有三种工作,每种工作需要完成前置任务才能进行当前工作,三个工作站之间转换需要花费时间,问将所有任务都完成需要花费的最少时间。一开始可以在任意一个工作站开始工作。
贪心一下,如果在一台电脑上能够完成多项任务,就让他都完成,然后在考虑转移,转移的话无非就是1-2
2-3 3-1 还有就是 3-2 2-1 1-3这种,一种是1另一种是2,所以我们不走1-3这种用两段1-2 2-3代替花费相同,这样在进行拓扑排序完事了。
吐槽一下数据思路错了也能过。
后来想了一下如果一开始三台电脑都能开始一个工作,那么先从哪台开始呢,不知道,所以三台为起始点进行拓扑选最小的的答案输出。
#include <bits/stdc++.h>
using namespace std;
vector<int> mp[15000];
int d[5][5], a[250], deg[250], temp[205], n;
int tooper(int ss)
{
queue<int> s;
int ans = n, cnt = 0, now = ss;
while (1)
{
while (1)
{
int flag = 0;
for (int i = 1; i <= n; ++i)
{
if (deg[i] == 0 && a[i] == now)
{
flag = 1;
deg[i] = -1;
cnt++;
for (int j = 0; j < mp[i].size(); ++j)
{
int v = mp[i][j];
deg[v]--;
}
}
}
if (flag == 0)
break;
}
if (cnt == n)
break;
now++;
ans++;
now = (now == 4 ? 1 : now);
}
return ans;
}
int main()
{
d[1][1] = d[2][2] = d[3][3] = 0;
d[1][2] = d[2][3] = d[3][1] = 1;
d[2][1] = d[3][2] = d[1][3] = 0x3f3f3f3f;
cin>>n;
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for (int i = 1; i <= n; ++i)
{
int k;
scanf("%d", &k);
for (int j = 1; j <= k; ++j)
{
int x;
scanf("%d", &x);
mp[x].push_back(i);
deg[i]++;
}
}
for (int i = 1; i <= n; ++i)
temp[i] = deg[i];
int ans = 0x3f3f3f3f;
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(1));
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(2));
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(3));
printf("%d\n", ans);
}
CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)的更多相关文章
- ZOJ 4124 拓扑排序+思维dfs
ZOJ - 4124Median 题目大意:有n个元素,给出m对a>b的关系,问哪个元素可能是第(n+1)/2个元素,可能的元素位置相应输出1,反之输出0 省赛都过去两周了,现在才补这题,这题感 ...
- HDU 6073 Matching In Multiplication(拓扑排序+思维)
http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...
- luogu 3441 [POI2006]MET-Subway 拓扑排序+思维
Description 给出一棵N个结点的树,选择L条路径,覆盖这些路径上的结点,使得被覆盖到的结点数最多. Input 第一行两个正整数N.L(2 <= N <= 1,000,000, ...
- 2019牛客暑期多校训练营(第五场)H-subsequence 2 (拓扑排序+思维)
>传送门< 题意: 给你几组样例,给你两个字符a,b,一个长度len,一个长度为len的字符串str,str是字符串s的子串 str是s删掉除过a,b两字符剩下的子串,现在求s,多种情况输 ...
- 洛谷 P4017 最大食物链计数 (拓扑排序,思维)
题意:有\(n\)个点,连\(m\)条边,求最多有多少条食物链(从头走到为有多少条路径). 题解:之前抽了点时间把拓扑排序补完了,这题其实就是一道拓扑排序的裸题.关于拓扑排序: 1.首先,我们用\ ...
- [CF #290-C] Fox And Names (拓扑排序)
题目链接:http://codeforces.com/contest/510/problem/C 题目大意:构造一个字母表,使得按照你的字母表能够满足输入的是按照字典序排下来. 递归建图:竖着切下来, ...
- CodeForces - 721C 拓扑排序+dp
题意: n个点m条边的图,起点为1,终点为n,每一条单向边输入格式为: a,b,c //从a点到b点耗时为c 题目问你最多从起点1到终点n能经过多少个不同的点,且总耗时小于等于t 题解: 这道 ...
- 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题
Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...
- Sorting It All Out (拓扑排序+思维)
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is ...
随机推荐
- ubuntu上安装redis和配置远程访问
ubuntu上安装redis和配置远程访问 安装redis: 下载安装包: wget http://download.redis.io/releases/redis-4.0.1.tar.gz 解压: ...
- c#声明数组
声明二维数组时候,出现报错: string[][] dataTable; dataTable = new string[rows][cols]; 无效的秩说明符: 应为","或&q ...
- C++11中的四种类型转换
static_cast 基础数据类型转换(基本类型) 同一继承体系中类型的转换(父子类型) 任意类型与空指针(void *)之间的转换(指针类型) dynamic_cast 执行派生类指针或引用与基类 ...
- String 对象-->charCodeAt() 方法
1.定义和用法 获取指定下标的字符的ASCII码(Unicode) 返回值:0~65535之间的整数 语法: string.charCodeAt(index) 参数: index:指定字符的下标 举例 ...
- Jmeter常用元件
1.测试计划:测试元件的容器,相当于一个项目名称 线程组: 2.监听器:负责收集测试结果,同时也被告知了结果显示的方式 (1)查看结果树:看具体某个请求——请求响应,结果明细 (2)聚合报告:汇总报 ...
- SpringMVC中利用HandlerExceptionResolver完成异常处理
在解决Controller层中的异常问题时,如果针对每个异常处理相对较为繁琐.在SpringMVC中提供了HandlerExceptionResolver用于处理捕获到的异常,从而重新定义返回给前端的 ...
- Hash记录字符串
Hash记录字符串模板: mod常常取1e9+7,base常常取299,,127等等等....有的题目会卡Hash,因为可能会有两个不同的Hash但却有相通的Hash值...这个时候可以用双Hash来 ...
- Gradle系列之Groovy基础篇
原文发于微信公众号 jzman-blog,欢迎关注交流. 上一篇学习了 Gradle 的入门知识,Gradle 基于 Groovy,今天学习一下 Groovy 的基础知识,Groovy 是基于 JVM ...
- cwyth(自动核销代码)
财务一体化系统,自动核销大数据代码: import pymysql import random import time #指定数据库地址.用户.密码.端口,使用connect()方法声明一个Mysql ...
- Matlab学习-(4)
1. 函数 1.1 原始方法 之前我调用函数的方法是,首先写好函数文件,然后保存,然后在主函数中调用.这种方法的不足在于会导致你的工作目录的文件太多,从而导致很乱.在网上找了一些解决方法. 1.2 本 ...