CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)
Furik and Rubik love playing computer games. Furik has recently found a new game that greatly interested Rubik. The game consists of n parts and to complete each part a player may probably need to complete some other ones. We know that the game can be fully completed, that is, its parts do not form cyclic dependencies.
Rubik has 3 computers, on which he can play this game. All computers are located in different houses. Besides, it has turned out that each part of the game can be completed only on one of these computers. Let's number the computers with integers from 1 to 3. Rubik can perform the following actions:
Complete some part of the game on some computer. Rubik spends exactly 1 hour on completing any part on any computer.
Move from the 1-st computer to the 2-nd one. Rubik spends exactly 1 hour on that.
Move from the 1-st computer to the 3-rd one. Rubik spends exactly 2 hours on that.
Move from the 2-nd computer to the 1-st one. Rubik spends exactly 2 hours on that.
Move from the 2-nd computer to the 3-rd one. Rubik spends exactly 1 hour on that.
Move from the 3-rd computer to the 1-st one. Rubik spends exactly 1 hour on that.
Move from the 3-rd computer to the 2-nd one. Rubik spends exactly 2 hours on that.
Help Rubik to find the minimum number of hours he will need to complete all parts of the game. Initially Rubik can be located at the computer he considers necessary.
Input
The first line contains integer n (1 ≤ n ≤ 200) — the number of game parts. The next line contains n integers, the i-th integer — ci (1 ≤ ci ≤ 3) represents the number of the computer, on which you can complete the game part number i.
Next n lines contain descriptions of game parts. The i-th line first contains integer ki (0 ≤ ki ≤ n - 1), then ki distinct integers ai, j (1 ≤ ai, j ≤ n; ai, j ≠ i) — the numbers of parts to complete before part i.
Numbers on all lines are separated by single spaces. You can assume that the parts of the game are numbered from 1 to n in some way. It is guaranteed that there are no cyclic dependencies between the parts of the game.
Output
On a single line print the answer to the problem.
Examples
Input
1
1
0
Output
1
Input
5
2 2 1 1 3
1 5
2 5 1
2 5 4
1 5
0
Output
7
Note
Note to the second sample: before the beginning of the game the best strategy is to stand by the third computer. First we complete part 5. Then we go to the 1-st computer and complete parts 3 and 4. Then we go to the 2-nd computer and complete parts 1 and 2. In total we get 1+1+2+1+2, which equals 7 hours.
题解:
现在有三个工作站,有三种工作,每种工作需要完成前置任务才能进行当前工作,三个工作站之间转换需要花费时间,问将所有任务都完成需要花费的最少时间。一开始可以在任意一个工作站开始工作。
贪心一下,如果在一台电脑上能够完成多项任务,就让他都完成,然后在考虑转移,转移的话无非就是1-2
2-3 3-1 还有就是 3-2 2-1 1-3这种,一种是1另一种是2,所以我们不走1-3这种用两段1-2 2-3代替花费相同,这样在进行拓扑排序完事了。
吐槽一下数据思路错了也能过。
后来想了一下如果一开始三台电脑都能开始一个工作,那么先从哪台开始呢,不知道,所以三台为起始点进行拓扑选最小的的答案输出。
#include <bits/stdc++.h>
using namespace std;
vector<int> mp[15000];
int d[5][5], a[250], deg[250], temp[205], n;
int tooper(int ss)
{
queue<int> s;
int ans = n, cnt = 0, now = ss;
while (1)
{
while (1)
{
int flag = 0;
for (int i = 1; i <= n; ++i)
{
if (deg[i] == 0 && a[i] == now)
{
flag = 1;
deg[i] = -1;
cnt++;
for (int j = 0; j < mp[i].size(); ++j)
{
int v = mp[i][j];
deg[v]--;
}
}
}
if (flag == 0)
break;
}
if (cnt == n)
break;
now++;
ans++;
now = (now == 4 ? 1 : now);
}
return ans;
}
int main()
{
d[1][1] = d[2][2] = d[3][3] = 0;
d[1][2] = d[2][3] = d[3][1] = 1;
d[2][1] = d[3][2] = d[1][3] = 0x3f3f3f3f;
cin>>n;
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for (int i = 1; i <= n; ++i)
{
int k;
scanf("%d", &k);
for (int j = 1; j <= k; ++j)
{
int x;
scanf("%d", &x);
mp[x].push_back(i);
deg[i]++;
}
}
for (int i = 1; i <= n; ++i)
temp[i] = deg[i];
int ans = 0x3f3f3f3f;
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(1));
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(2));
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(3));
printf("%d\n", ans);
}
CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)的更多相关文章
- ZOJ 4124 拓扑排序+思维dfs
ZOJ - 4124Median 题目大意:有n个元素,给出m对a>b的关系,问哪个元素可能是第(n+1)/2个元素,可能的元素位置相应输出1,反之输出0 省赛都过去两周了,现在才补这题,这题感 ...
- HDU 6073 Matching In Multiplication(拓扑排序+思维)
http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...
- luogu 3441 [POI2006]MET-Subway 拓扑排序+思维
Description 给出一棵N个结点的树,选择L条路径,覆盖这些路径上的结点,使得被覆盖到的结点数最多. Input 第一行两个正整数N.L(2 <= N <= 1,000,000, ...
- 2019牛客暑期多校训练营(第五场)H-subsequence 2 (拓扑排序+思维)
>传送门< 题意: 给你几组样例,给你两个字符a,b,一个长度len,一个长度为len的字符串str,str是字符串s的子串 str是s删掉除过a,b两字符剩下的子串,现在求s,多种情况输 ...
- 洛谷 P4017 最大食物链计数 (拓扑排序,思维)
题意:有\(n\)个点,连\(m\)条边,求最多有多少条食物链(从头走到为有多少条路径). 题解:之前抽了点时间把拓扑排序补完了,这题其实就是一道拓扑排序的裸题.关于拓扑排序: 1.首先,我们用\ ...
- [CF #290-C] Fox And Names (拓扑排序)
题目链接:http://codeforces.com/contest/510/problem/C 题目大意:构造一个字母表,使得按照你的字母表能够满足输入的是按照字典序排下来. 递归建图:竖着切下来, ...
- CodeForces - 721C 拓扑排序+dp
题意: n个点m条边的图,起点为1,终点为n,每一条单向边输入格式为: a,b,c //从a点到b点耗时为c 题目问你最多从起点1到终点n能经过多少个不同的点,且总耗时小于等于t 题解: 这道 ...
- 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题
Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...
- Sorting It All Out (拓扑排序+思维)
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is ...
随机推荐
- css | js 实现扩展卡片小demo
1.代码如下 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...
- (js描述的)数据结构[队列结构,优先级队列](3)
(js描述的)数据结构[队列结构](3) 一.队列结构的特点: 1.基于数组来实现,的一种受限的线性结构. 2.只允许在表头进行删除操作,在表尾进行插入操作. 3.先进先出(FIFO) 二.队列的一些 ...
- Python Requests-学习笔记(9)-错误与异常
遇到网络问题(如:DNS查询失败.拒绝连接等)时,Requests会抛出一个ConnectionError 异常. 遇到罕见的无效HTTP响应时,Requests则会抛出一个 HTTPError 异常 ...
- python3(一)
print('test', '怎么自动建了这么多目录', 'aaaaaaa') #test 怎么自动建了这么多目录 aaaaaaa 注释# # ---------------------------- ...
- Go语言 命令行解析(一)
命令行启动服务的方式,在后端使用非常广泛,如果有写过C语言的同学相信不难理解这一点!在C语言中,我们可以根据argc和argv来获取和解析命令行的参数,从而通过不同的参数调取不同的方法,同时也可以用U ...
- win10+ubuntu双系统修复ubuntu启动引导
因为windows是不能引导linux的,而每次win10升级或恢复都会将linux的启动引导覆盖掉,导致无法进入linux, 所以一直就禁止了win10更新.这几天win10出了点小毛病,所以就狠下 ...
- 智能指针 shared_ptr
1.不支持数组 2.c++11支持make_shared,分配一次内存,构造函数为private和proteced时不能调用. 3.new初始化分配两次内存,一.分配数据块内存,二.分配控制块内存
- 理解class.forName() ---使用jdbc方式链接数据库时会经常看到这句代码
目录(?)[-] 官方文档 类装载 两种装载方法的区别 不同的类装载器 是否实例化类 在jdbc链接数据库中的应用 资源 原文地址:http://yanwushu.sinaapp.com/clas ...
- C#多线程(4):进程同步Mutex类
Mutex 类 构造函数和方法 系统只能运行一个程序的实例 解释一下上面的示例 接替运行 进程同步示例 另外 Mutex 类 Mutex 中文为互斥,Mutex 类叫做互斥锁.它还可用于进程间同步的同 ...
- 空间小姐姐生活照,我用python破解加密压缩包,无忧查看
事情的经过是这样的: 又是奶茶,行吧行吧. 快点开工,争取李大伟回来之前搞定. 李大伟说是6位数字密码 那么我们可以利用python生成全部的六位数字密码 #生成从000000到99999的密码表f ...