CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)
Furik and Rubik love playing computer games. Furik has recently found a new game that greatly interested Rubik. The game consists of n parts and to complete each part a player may probably need to complete some other ones. We know that the game can be fully completed, that is, its parts do not form cyclic dependencies.
Rubik has 3 computers, on which he can play this game. All computers are located in different houses. Besides, it has turned out that each part of the game can be completed only on one of these computers. Let's number the computers with integers from 1 to 3. Rubik can perform the following actions:
Complete some part of the game on some computer. Rubik spends exactly 1 hour on completing any part on any computer.
Move from the 1-st computer to the 2-nd one. Rubik spends exactly 1 hour on that.
Move from the 1-st computer to the 3-rd one. Rubik spends exactly 2 hours on that.
Move from the 2-nd computer to the 1-st one. Rubik spends exactly 2 hours on that.
Move from the 2-nd computer to the 3-rd one. Rubik spends exactly 1 hour on that.
Move from the 3-rd computer to the 1-st one. Rubik spends exactly 1 hour on that.
Move from the 3-rd computer to the 2-nd one. Rubik spends exactly 2 hours on that.
Help Rubik to find the minimum number of hours he will need to complete all parts of the game. Initially Rubik can be located at the computer he considers necessary.
Input
The first line contains integer n (1 ≤ n ≤ 200) — the number of game parts. The next line contains n integers, the i-th integer — ci (1 ≤ ci ≤ 3) represents the number of the computer, on which you can complete the game part number i.
Next n lines contain descriptions of game parts. The i-th line first contains integer ki (0 ≤ ki ≤ n - 1), then ki distinct integers ai, j (1 ≤ ai, j ≤ n; ai, j ≠ i) — the numbers of parts to complete before part i.
Numbers on all lines are separated by single spaces. You can assume that the parts of the game are numbered from 1 to n in some way. It is guaranteed that there are no cyclic dependencies between the parts of the game.
Output
On a single line print the answer to the problem.
Examples
Input
1
1
0
Output
1
Input
5
2 2 1 1 3
1 5
2 5 1
2 5 4
1 5
0
Output
7
Note
Note to the second sample: before the beginning of the game the best strategy is to stand by the third computer. First we complete part 5. Then we go to the 1-st computer and complete parts 3 and 4. Then we go to the 2-nd computer and complete parts 1 and 2. In total we get 1+1+2+1+2, which equals 7 hours.
题解:
现在有三个工作站,有三种工作,每种工作需要完成前置任务才能进行当前工作,三个工作站之间转换需要花费时间,问将所有任务都完成需要花费的最少时间。一开始可以在任意一个工作站开始工作。
贪心一下,如果在一台电脑上能够完成多项任务,就让他都完成,然后在考虑转移,转移的话无非就是1-2
2-3 3-1 还有就是 3-2 2-1 1-3这种,一种是1另一种是2,所以我们不走1-3这种用两段1-2 2-3代替花费相同,这样在进行拓扑排序完事了。
吐槽一下数据思路错了也能过。
后来想了一下如果一开始三台电脑都能开始一个工作,那么先从哪台开始呢,不知道,所以三台为起始点进行拓扑选最小的的答案输出。
#include <bits/stdc++.h>
using namespace std;
vector<int> mp[15000];
int d[5][5], a[250], deg[250], temp[205], n;
int tooper(int ss)
{
queue<int> s;
int ans = n, cnt = 0, now = ss;
while (1)
{
while (1)
{
int flag = 0;
for (int i = 1; i <= n; ++i)
{
if (deg[i] == 0 && a[i] == now)
{
flag = 1;
deg[i] = -1;
cnt++;
for (int j = 0; j < mp[i].size(); ++j)
{
int v = mp[i][j];
deg[v]--;
}
}
}
if (flag == 0)
break;
}
if (cnt == n)
break;
now++;
ans++;
now = (now == 4 ? 1 : now);
}
return ans;
}
int main()
{
d[1][1] = d[2][2] = d[3][3] = 0;
d[1][2] = d[2][3] = d[3][1] = 1;
d[2][1] = d[3][2] = d[1][3] = 0x3f3f3f3f;
cin>>n;
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for (int i = 1; i <= n; ++i)
{
int k;
scanf("%d", &k);
for (int j = 1; j <= k; ++j)
{
int x;
scanf("%d", &x);
mp[x].push_back(i);
deg[i]++;
}
}
for (int i = 1; i <= n; ++i)
temp[i] = deg[i];
int ans = 0x3f3f3f3f;
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(1));
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(2));
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(3));
printf("%d\n", ans);
}
CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)的更多相关文章
- ZOJ 4124 拓扑排序+思维dfs
ZOJ - 4124Median 题目大意:有n个元素,给出m对a>b的关系,问哪个元素可能是第(n+1)/2个元素,可能的元素位置相应输出1,反之输出0 省赛都过去两周了,现在才补这题,这题感 ...
- HDU 6073 Matching In Multiplication(拓扑排序+思维)
http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...
- luogu 3441 [POI2006]MET-Subway 拓扑排序+思维
Description 给出一棵N个结点的树,选择L条路径,覆盖这些路径上的结点,使得被覆盖到的结点数最多. Input 第一行两个正整数N.L(2 <= N <= 1,000,000, ...
- 2019牛客暑期多校训练营(第五场)H-subsequence 2 (拓扑排序+思维)
>传送门< 题意: 给你几组样例,给你两个字符a,b,一个长度len,一个长度为len的字符串str,str是字符串s的子串 str是s删掉除过a,b两字符剩下的子串,现在求s,多种情况输 ...
- 洛谷 P4017 最大食物链计数 (拓扑排序,思维)
题意:有\(n\)个点,连\(m\)条边,求最多有多少条食物链(从头走到为有多少条路径). 题解:之前抽了点时间把拓扑排序补完了,这题其实就是一道拓扑排序的裸题.关于拓扑排序: 1.首先,我们用\ ...
- [CF #290-C] Fox And Names (拓扑排序)
题目链接:http://codeforces.com/contest/510/problem/C 题目大意:构造一个字母表,使得按照你的字母表能够满足输入的是按照字典序排下来. 递归建图:竖着切下来, ...
- CodeForces - 721C 拓扑排序+dp
题意: n个点m条边的图,起点为1,终点为n,每一条单向边输入格式为: a,b,c //从a点到b点耗时为c 题目问你最多从起点1到终点n能经过多少个不同的点,且总耗时小于等于t 题解: 这道 ...
- 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题
Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...
- Sorting It All Out (拓扑排序+思维)
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is ...
随机推荐
- 操作文件-取出一个60s内log日志中ip访问次数超过100次的ip
import timea=0while True: d={} f = open(r"/Users/**juan/Downloads/access.log",encoding=&qu ...
- 【Java】Junit单元测试
什么是单元测试? 单元测试(unit testing),是指对软件中的最小可测试单元进行检查和验证. 对于单元测试中单元的含义,一般来说,要根据实际情况去判定其具体含义,如C语言中单元指一个函数,Ja ...
- 教你如何安装和使用Python pip
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:Starshot PS:如有需要Python学习资料的小伙伴可以加点击 ...
- L11注意力机制和Seq2seq模型
注意力机制 在"编码器-解码器(seq2seq)"⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息.当编码器为循环神经⽹络时,背景变量 ...
- poi导出word文档,doc和docx
maven <!-- https://mvnrepository.com/artifact/org.apache.poi/poi --><dependency> <gro ...
- python3购物车
python3实现购物车小程序,优化后将程序分成函数,用文件注册和验证用户名密码. #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 20 ...
- HTML学习过程-(1)
记录我HTML的学习 (1) 最开始学习html是在因为在听北京理工大学教授讲的网络公开课上.当时老师讲的是网络爬虫,因为要爬取特定网页的信息,需要借助[正则表达式](https://baike.ba ...
- NGINX 类漏洞 整理记录
简单介绍NGINX: Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,在BSD-like 协议下发行. 其特点是占有内存少,并发能力强,nginx的并 ...
- seo 回忆录百度基本概念(一)
前言 我以前的博客自己做的seo,现在拿来和大家一起交流,是白帽哈,黑帽的不敢发,也不敢学[微笑]. 正文 为什么做seo 做seo说到底就是为了排名.为什么需要排名呢?因为现在人比较懒,只会去查看第 ...
- Spark RDD----pyspark第四次作业
1.pyspark交互式编程 查看群里发的“data01.txt”数据集,该数据集包含了某大学计算机系的成绩,数据格式如下所示: Tom,DataBase,80 Tom,Algorithm,50 To ...