CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)
Furik and Rubik love playing computer games. Furik has recently found a new game that greatly interested Rubik. The game consists of n parts and to complete each part a player may probably need to complete some other ones. We know that the game can be fully completed, that is, its parts do not form cyclic dependencies.
Rubik has 3 computers, on which he can play this game. All computers are located in different houses. Besides, it has turned out that each part of the game can be completed only on one of these computers. Let's number the computers with integers from 1 to 3. Rubik can perform the following actions:
Complete some part of the game on some computer. Rubik spends exactly 1 hour on completing any part on any computer.
Move from the 1-st computer to the 2-nd one. Rubik spends exactly 1 hour on that.
Move from the 1-st computer to the 3-rd one. Rubik spends exactly 2 hours on that.
Move from the 2-nd computer to the 1-st one. Rubik spends exactly 2 hours on that.
Move from the 2-nd computer to the 3-rd one. Rubik spends exactly 1 hour on that.
Move from the 3-rd computer to the 1-st one. Rubik spends exactly 1 hour on that.
Move from the 3-rd computer to the 2-nd one. Rubik spends exactly 2 hours on that.
Help Rubik to find the minimum number of hours he will need to complete all parts of the game. Initially Rubik can be located at the computer he considers necessary.
Input
The first line contains integer n (1 ≤ n ≤ 200) — the number of game parts. The next line contains n integers, the i-th integer — ci (1 ≤ ci ≤ 3) represents the number of the computer, on which you can complete the game part number i.
Next n lines contain descriptions of game parts. The i-th line first contains integer ki (0 ≤ ki ≤ n - 1), then ki distinct integers ai, j (1 ≤ ai, j ≤ n; ai, j ≠ i) — the numbers of parts to complete before part i.
Numbers on all lines are separated by single spaces. You can assume that the parts of the game are numbered from 1 to n in some way. It is guaranteed that there are no cyclic dependencies between the parts of the game.
Output
On a single line print the answer to the problem.
Examples
Input
1
1
0
Output
1
Input
5
2 2 1 1 3
1 5
2 5 1
2 5 4
1 5
0
Output
7
Note
Note to the second sample: before the beginning of the game the best strategy is to stand by the third computer. First we complete part 5. Then we go to the 1-st computer and complete parts 3 and 4. Then we go to the 2-nd computer and complete parts 1 and 2. In total we get 1+1+2+1+2, which equals 7 hours.
题解:
现在有三个工作站,有三种工作,每种工作需要完成前置任务才能进行当前工作,三个工作站之间转换需要花费时间,问将所有任务都完成需要花费的最少时间。一开始可以在任意一个工作站开始工作。
贪心一下,如果在一台电脑上能够完成多项任务,就让他都完成,然后在考虑转移,转移的话无非就是1-2
2-3 3-1 还有就是 3-2 2-1 1-3这种,一种是1另一种是2,所以我们不走1-3这种用两段1-2 2-3代替花费相同,这样在进行拓扑排序完事了。
吐槽一下数据思路错了也能过。
后来想了一下如果一开始三台电脑都能开始一个工作,那么先从哪台开始呢,不知道,所以三台为起始点进行拓扑选最小的的答案输出。
#include <bits/stdc++.h>
using namespace std;
vector<int> mp[15000];
int d[5][5], a[250], deg[250], temp[205], n;
int tooper(int ss)
{
queue<int> s;
int ans = n, cnt = 0, now = ss;
while (1)
{
while (1)
{
int flag = 0;
for (int i = 1; i <= n; ++i)
{
if (deg[i] == 0 && a[i] == now)
{
flag = 1;
deg[i] = -1;
cnt++;
for (int j = 0; j < mp[i].size(); ++j)
{
int v = mp[i][j];
deg[v]--;
}
}
}
if (flag == 0)
break;
}
if (cnt == n)
break;
now++;
ans++;
now = (now == 4 ? 1 : now);
}
return ans;
}
int main()
{
d[1][1] = d[2][2] = d[3][3] = 0;
d[1][2] = d[2][3] = d[3][1] = 1;
d[2][1] = d[3][2] = d[1][3] = 0x3f3f3f3f;
cin>>n;
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for (int i = 1; i <= n; ++i)
{
int k;
scanf("%d", &k);
for (int j = 1; j <= k; ++j)
{
int x;
scanf("%d", &x);
mp[x].push_back(i);
deg[i]++;
}
}
for (int i = 1; i <= n; ++i)
temp[i] = deg[i];
int ans = 0x3f3f3f3f;
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(1));
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(2));
for (int i = 1; i <= n; ++i)
deg[i] = temp[i];
ans = min(ans, tooper(3));
printf("%d\n", ans);
}
CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)的更多相关文章
- ZOJ 4124 拓扑排序+思维dfs
ZOJ - 4124Median 题目大意:有n个元素,给出m对a>b的关系,问哪个元素可能是第(n+1)/2个元素,可能的元素位置相应输出1,反之输出0 省赛都过去两周了,现在才补这题,这题感 ...
- HDU 6073 Matching In Multiplication(拓扑排序+思维)
http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...
- luogu 3441 [POI2006]MET-Subway 拓扑排序+思维
Description 给出一棵N个结点的树,选择L条路径,覆盖这些路径上的结点,使得被覆盖到的结点数最多. Input 第一行两个正整数N.L(2 <= N <= 1,000,000, ...
- 2019牛客暑期多校训练营(第五场)H-subsequence 2 (拓扑排序+思维)
>传送门< 题意: 给你几组样例,给你两个字符a,b,一个长度len,一个长度为len的字符串str,str是字符串s的子串 str是s删掉除过a,b两字符剩下的子串,现在求s,多种情况输 ...
- 洛谷 P4017 最大食物链计数 (拓扑排序,思维)
题意:有\(n\)个点,连\(m\)条边,求最多有多少条食物链(从头走到为有多少条路径). 题解:之前抽了点时间把拓扑排序补完了,这题其实就是一道拓扑排序的裸题.关于拓扑排序: 1.首先,我们用\ ...
- [CF #290-C] Fox And Names (拓扑排序)
题目链接:http://codeforces.com/contest/510/problem/C 题目大意:构造一个字母表,使得按照你的字母表能够满足输入的是按照字典序排下来. 递归建图:竖着切下来, ...
- CodeForces - 721C 拓扑排序+dp
题意: n个点m条边的图,起点为1,终点为n,每一条单向边输入格式为: a,b,c //从a点到b点耗时为c 题目问你最多从起点1到终点n能经过多少个不同的点,且总耗时小于等于t 题解: 这道 ...
- 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题
Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...
- Sorting It All Out (拓扑排序+思维)
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is ...
随机推荐
- 关于Git我们不得不知道的事(一)
一.什么是Git? Git是目前世界上最先进的分布式版本控制系统(没有之一). Git可以协助我们很方便的管理我们的项目,我们随时可以找回(或者回到)我们之前任何一个时刻的项目:还可以让同事或者开发小 ...
- 100 Path Sum
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...
- html的嵌套规则
html元素分为块状元素和内联元素,块状元素作为其他元素的容器. 块状元素可以嵌套其他块状元素 块状元素可以嵌套内联元素 内联元素不能嵌套块状元素 p内不能嵌套块状元素 有几个特殊块状元素只能包含内联 ...
- Linux 磁盘管理篇,开机挂载
设置开机挂载需要到 /etc/fstab 里设置 第一列:磁盘设备文件名或该设备的label 第二列:挂载点 第三列:磁盘分区文件系统 第四列:文件系统参数 第五列:能否被dump备份命令作用 第六列 ...
- OS-DOS/CMD/Windows/各类软件快捷键等使用总结
一.快捷键 很多软件的快捷键使用相通,在不确定的情况下,先试试其他软件的快捷键的使用方法 Windows电脑快捷键 HP惠普笔记本 win+E 打开文件管器 win+D 显示桌面 win+L 锁计算机 ...
- hadoop(十)hdfs上传删除文件(完全分布式七)|12
集群测试 上传小文件到集群,随便选择一个小文件上传到hdfs的根目录 [shaozhiqi@hadoop102 hadoop-3.1.2]$ bin/hdfs dfs -put wcinput/wc. ...
- centOS7常用操作命令
大多和DOS命令差不多 文件与目录操作 命令 解析 cd /home 进入 ‘/home’ 目录 cd .. 返回上一级目录 cd ../.. 返回上两级目录 cd - 返回上次所在目录 cp fil ...
- 域控安全-EventID 4662&Powershell将Schema下Objects的schemaIDGUID属性离线保存
首先看一下EventID 4662的样子 0x01 什么情况下会产生该日志呢? 该日志出现在对Active Directory Object设置SACL时会出现 0x02 为什么要监控该日志呢? 1. ...
- AJ学IOS(18)UI之QQ聊天布局_键盘通知实现自动弹出隐藏_自动回复
AJ分享,必须精品 先看图片 第一步完成tableView和Cell的架子的图 完善图片 键盘弹出设置后图片: 自动回复图: 粗狂的架子 tableView和Cell的创建 首相tableView为了 ...
- 使用pandas读取csv文件和写入文件
这是我的CSV文件 读取其中得tempo这一列 import pandas as pd #导入pandas包 data = pd.read_csv("E:\\毕设\\情感识别\\Music- ...