试题描述

形如2P-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果P是个素数,2P-1不一定也是素数。到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。

任务:从文件中输入P(1000<P<3100000),计算2P-1的位数和最后500位数字(用十进制高精度数表示)

 
输入
文件中只包含一个整数P(1000<P<3100000)
输出
第一行:十进制高精度数2P-1的位数。
第2-11行:十进制高精度数2P-1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)
不必验证2P-1与P是否为素数。
输入示例
1279
输出示例
386
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000104079321946643990819252403273640855
38615262247266704805319112350403608059673360298012
23944173232418484242161395428100779138356624832346
49081399066056773207629241295093892203457731833496
61583550472959420547689811211693677147548478866962
50138443826029173234888531116082853841658502825560
46662248318909188018470682222031405210266984354887
32958028878050869736186900714720710555703168729087
 

我竟然还会写高精度!?!?!?

第一问用数学解法,第二问写个乘法,套个快速幂就行了。

妈妈我忘删调试了,竟然又T了一发,这是打铁的节奏么?!?!?!

#include<cstdio>
#include<cctype>
#include<cmath>
#include<cstring>
#include<algorithm>
#define lc ch[x][0]
#define rc ch[x][1]
#define rep(s,t) for(int i=s;i<=t;i++)
#define ren for(int i=first[x];i!=-1;i=next[i])
using namespace std;
inline int read() {
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
const int maxn=;
struct bign {
int len,s[maxn];
bign() {len=;fill(s,s+maxn,);}
bign operator = (int a) {
len=;while(a) s[len++]=a%,a/=;
}
void clean() {while(len>&&!s[len-]) len--;}
void print() {
int cnt=;
rep(len,) s[i]=;
for(int i=;i>=;i--) {
putchar(s[i]+'');
if(++cnt==) cnt=,putchar('\n');
}
}
bign operator * (bign &b) {
bign ans;
rep(,len-)
for(int j=;j<b.len;j++)
if(i+j<) ans.s[i+j]+=s[i]*b.s[j];
ans.len=min(len+b.len+,);
rep(,ans.len-) ans.s[i+]+=ans.s[i]/,ans.s[i]%=;
ans.clean();
return ans;
}
};
void pow(bign& ans,int n) {
bign tmp;tmp=ans;n--;
while(n) {
if(n&) ans=ans*tmp;
tmp=tmp*tmp;n>>=;
}
}
int main() {
int n=read();
bign ans;ans=;pow(ans,n);
ans.s[]--;printf("%d\n",int(log10()*n)+);
ans.print();
return ;
}

NOIP200304麦森数的更多相关文章

  1. 【转】[NOIP2003普及组]麦森数

    来源:http://vivid.name/tech/mason.html 不得不纪念一下这道题,因为我今天一整天的时间都花到这道题上了.因为这道题,我学会了快速幂,学会了高精度乘高精度,学会了静态查错 ...

  2. vijosP1223麦森数

    vijosP1223麦森数 链接:https://vijos.org/p/1223 [思路] 快速幂+高精乘. 计算2^p-1可以快速幂的方法在O(logn)的时间内出解,限于数据范围我们需要用到高精 ...

  3. 【高精度乘法】NOIP2003麦森数

    题目描述 形如2^{P}-12P−1的素数称为麦森数,这时PP一定也是个素数.但反过来不一定,即如果PP是个素数,2^{P}-12P−1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的 ...

  4. 洛谷试炼场-简单数学问题-P1045 麦森数-高精度快速幂

    洛谷试炼场-简单数学问题 B--P1045 麦森数 Description 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果PP是个素数,2^P-1 不一定也是素数.到19 ...

  5. TZOJ 4839 麦森数(模拟快速幂)

    描述 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它有9 ...

  6. 洛谷 P1045 麦森数

    题目描述 形如2^{P}-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^{P}-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=30213 ...

  7. [NOIP2003普及组]麦森数(快速幂+高精度)

    [NOIP2003普及组]麦森数(快速幂+高精度) Description 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998 ...

  8. 洛谷P1045 麦森数

    题目描述 形如2^{P}-12 ​P ​​ −1的素数称为麦森数,这时PP一定也是个素数.但反过来不一定,即如果PP是个素数,2^{P}-12 ​P ​​ −1不一定也是素数.到1998年底,人们已找 ...

  9. 麦森数--NOIP2003

    题目描述 形如2P−12^{P}-12P−1 的素数称为麦森数,这时PPP 一定也是个素数.但反过来不一定,即如果PPP 是个素数,2P−12^{P}-12P−1 不一定也是素数.到1998年底,人们 ...

随机推荐

  1. django migration使用指南

    转自: https://docs.djangoproject.com/en/1.8/topics/migrations/

  2. 【云计算】实战-五个Docker监控工具的对比

    [实战]五个Docker监控工具的对比 阅读目录 Docker Stats命令 CAdvisor Scout Data Dog Sensu Monitoring Framework 总结 这篇文章作者 ...

  3. mysql sql维护常用命令

    mysql修改表名,列名,列类型,添加表列,删除表列 alter table test rename test1; --修改表名 alter table test add  column name v ...

  4. abstract class和interface的区别

    1. 引言 2. 概念引入 ●什么是接口? 接口是包含一组虚方法的抽象类型,其中每一种方法都有其名称.参数和返回值.接口方法不能包含任何实现,CLR允许接口可以包含事件.属性.索引 器.静态方法.静态 ...

  5. wget 增加单个文件下载限制大小

    增加了参数 -M --limit-size 使用方法 -M 5m 或者 -M 500k 或者 --limit-size=5m 或者 --limit-size=500k 下载地址 http://pan. ...

  6. Extjs读取本地下拉选框数据源,分为text和value,显示text,传值value

    this.rdTypeCom=new Ext.form.ComboBox({              hiddenName:'rdType',              store:new Ext. ...

  7. 【图文详解】scrapy安装与真的快速上手——爬取豆瓣9分榜单

    写在开头 现在scrapy的安装教程都明显过时了,随便一搜都是要你安装一大堆的依赖,什么装python(如果别人连python都没装,为什么要学scrapy….)wisted, zope interf ...

  8. C语言实现大数据除法

    本题要求计算A/B,其中A是不超过1000位的正整数,B是1位正整数.你需要输出商数Q和余数R,使得A = B * Q + R成立. 输入格式: 输入在1行中依次给出A和B,中间以1空格分隔. 输出格 ...

  9. Maven使用笔记(一)Maven安装及常用命令

    1.Windows下安装Maven 首先去下载Maven安装包,http://maven.apache.org/download.cgi,目前最新版本是 Maven 3.2.3 . 解压到本地,可以看 ...

  10. RTP与RTCP协议介绍

    转自:http://zhangjunhd.blog.51cto.com/113473/25481/ 本文主要介绍RTP与RTCP协议. author: ZJ   06-11-17 Blog: [url ...