HDU 5950:Recursive sequence(矩阵快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5950
题意:给出 a,b,n,递推出 f(n) = f(n-1) + f(n-2) * 2 + n ^ 4. f(1) = a, f(2) = b.
思路:在比赛时候知道是矩阵快速幂,可是推不出矩阵.那个n^4不知道怎么解决。结束后问其他人才知道要构造一个7 * 7的矩阵,而不是3 * 3的..

转自:http://blog.csdn.net/spring371327/article/details/52973534
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <string>
#include <cmath>
#include <queue>
#include <vector>
using namespace std;
#define N 1010
#define INF 0x3f3f3f3f
#define MOD 2147493647
typedef long long LL; struct matrix
{
LL a[][]; void init() {
memset(a, , sizeof(a));
for(int i = ; i < ; i++) a[i][i] = ;
} matrix operator * (matrix b) {
matrix ans;
LL tmp;
for(int i = ; i < ; i++) {
for(int j = ; j < ; j++) {
ans.a[i][j] = ;
for(int k = ; k < ; k++) {
tmp = a[i][k] * b.a[k][j] % MOD;
ans.a[i][j] = (ans.a[i][j] + tmp % MOD) % MOD;
}
}
}
return ans;
}
}; matrix q_pow(matrix a, LL b)
{
matrix ans;
ans.init();
while(b) {
if(b & ) ans = ans * a;
b >>= ;
a = a * a;
}
return ans;
} int main()
{
matrix mo;
memset(mo.a, , sizeof(mo.a));
mo.a[][] = ;
mo.a[][] = ; mo.a[][] = , mo.a[][] = , mo.a[][] = , mo.a[][] = , mo.a[][] = , mo.a[][] = ;
mo.a[][] = , mo.a[][] = , mo.a[][] = , mo.a[][] = , mo.a[][] = ;
mo.a[][] = , mo.a[][] = , mo.a[][] = , mo.a[][] = ;
mo.a[][] = , mo.a[][] = , mo.a[][] = ;
mo.a[][] = , mo.a[][] = ;
mo.a[][] = ;
int t;
scanf("%d", &t);
while(t--) {
long long n, a, b;
scanf("%I64d%I64d%I64d", &n, &a, &b);
if(n == ) printf("%I64d\n", a);
else if(n == ) printf("%I64d\n", b);
else {
matrix ans = q_pow(mo, n - );
LL sum = ;
sum = (sum + ans.a[][] * a) % MOD;
sum = (sum + ans.a[][] * b) % MOD;
sum = (sum + ans.a[][] * ) % MOD;
sum = (sum + ans.a[][] * ) % MOD;
sum = (sum + ans.a[][] * ) % MOD;
sum = (sum + ans.a[][] * ) % MOD;
sum = (sum + ans.a[][]) % MOD;
printf("%I64d\n", sum);
}
}
return ;
}
HDU 5950:Recursive sequence(矩阵快速幂)的更多相关文章
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- hdu 5950 Recursive sequence 矩阵快速幂
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- 5950 Recursive sequence (矩阵快速幂)
题意:递推公式 Fn = Fn-1 + 2 * Fn-2 + n*n,让求 Fn; 析:很明显的矩阵快速幂,因为这个很像Fibonacci数列,所以我们考虑是矩阵,然后我们进行推公式,因为这样我们是无 ...
- Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...
- HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)
题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...
- HDU5950 Recursive sequence —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5950 Recursive sequence Time Limit: 2000/1000 MS (Java/Others) ...
- HDU - 1005 Number Sequence 矩阵快速幂
HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...
- HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...
- HDU - 1005 -Number Sequence(矩阵快速幂系数变式)
A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...
- CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs
题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i < k\\ ...
随机推荐
- Java List操作
一.List:.有顺序以线性方式存储,可以存放重复对象 线程安全方法:List list = Collections.synchronizedList(new LinkedList(...)); ...
- jango_modles_views显示
views #!/usr/bin/env python #__coding:utf-8__ from django.shortcuts import render,render_to_response ...
- jquery .on的使用
1.7版本以上,开始使用.on绑定时间 给jquery动态产生的元素绑定事件不能使用普通的$("#fff").click(function(){alert("ok&quo ...
- 轻量级的jquery
话不多说,直接上源代码 一.tool.js 封装一些共用方法,以及相关的浏览器兼容细节,供Base.js调用 //浏览器检测,一旦加载即执行 (function() { window.sys = {} ...
- 为什么Button点击了没反应,反而其他事件反应了
- Radius session
1,EAP 中继 client start, NAS require identity, client sent username, NAS sent username to sever, serve ...
- Java基础之处理事件——应用程序中的语义事件监听器(Sketcher 5 with element color listeners)
控制台程序. 为了标识元素的类型,可以为菜单已提供的4中元素定义常量,用作ID.这有助于执行菜单项监听器的操作,还提供了一种标识颜色类型的方式.我们会累积许多应用程序范围的常量,所以把它们定义为可以静 ...
- redhat linux 安装mysql5.6.27
1.yum安装mysql(root身份) yum install mysql-server mysql-devel mysql -y 如没有配置yum,请参见博客:http://www.cnblogs ...
- ViewController 的代码规范
1.#pragma mark - life cycle viewDidLoad viewWillAppear 2.#pragma mark - delegate #pragma mark collec ...
- String类型方法
String类型 //1.返回长度 length var a="lynn_hello"; console.log(a.length); //2.相加 concat() 返回一个新的 ...