Time Limit: 2MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u

Description

When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= N <= 1000) fields numbered 1..N, the first of which contains his house and the Nth of which contains the big barn. A total M (1 <= M <= 10000) paths that connect the fields in various ways. Each path connects two different fields and has a nonzero length smaller than 35,000.

To show off his farm in the best way, he walks a tour that starts at his house, potentially travels through some fields, and ends at the barn. Later, he returns (potentially through some fields) back to his house again.

He wants his tour to be as short as possible, however he doesn't want to walk on any given path more than once. Calculate the shortest tour possible. FJ is sure that some tour exists for any given farm.

Input

* Line 1: Two space-separated integers: N and M.

* Lines 2..M+1: Three space-separated integers that define a path: The starting field, the end field, and the path's length.

Output

A single line containing the length of the shortest tour. 

Sample Input

4 5
1 2 1
2 3 1
3 4 1
1 3 2
2 4 2

Sample Output

6

Source

 
 
POJ的对应页面突然进不去了,没法评测。
目前只确保过了样例
 
最小费用问题
 
 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
const int INF=;
const int mxn=;
int head[mxn],dis[mxn],pr[mxn];
bool inqu[mxn];
int n,m;
int s,t;
int ans;
int cnt=;
struct edge{
int from,to,next,v,c;
}e[mxn*];
void add_edge(int f,int t,int v,int c){
e[++cnt]=(edge){f,t,head[f],v,c};head[f]=cnt;
e[++cnt]=(edge){t,f,head[t],,-c};head[t]=cnt;
}
bool SPFA(){
queue<int>q;
memset(inqu,false,sizeof(inqu));
for(int i=;i<=t;i++)dis[i]=INF;
dis[s]=;
inqu[s]=;
q.push(s);
int i,j;
while(!q.empty()){
int u=q.front();q.pop();
inqu[u]=false;
for(i=head[u];i;i=e[i].next){
int v=e[i].to;
if(e[i].v && dis[u]+e[i].c<dis[v]){
dis[v]=dis[u]+e[i].c;
pr[v]=i;
if(!inqu[v]){
q.push(v);
inqu[v]=true;
}
}
}
}
return dis[t]!=INF;
}
void mcf(){
int i;
while(SPFA()){
int temp=INF;
for(i=pr[t];i;i=e[pr[i]].from)temp=min(temp,e[i].v);
ans+=dis[t]*temp;
for(i=pr[t];i;i=e[pr[i]].from){
e[i].v-=temp;
e[i^].v+=temp;
}
}
}
int main(){
scanf("%d%d",&n,&m);
s=;t=n+;
int x,y,c;
for(int i=;i<=m;i++){
scanf("%d%d%d",&x,&y,&c);
add_edge(x,y,,c);
add_edge(y,x,,c);
}
add_edge(s,,,);
add_edge(n,t,,);
mcf();
printf("%d\n",ans);
}

POJ2135 Farm Tour的更多相关文章

  1. POJ2135 Farm Tour —— 最小费用最大流

    题目链接:http://poj.org/problem?id=2135 Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  2. poj2135 Farm Tour(费用流)

    Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...

  3. POJ2135 Farm Tour(最小费用最大流)

    题目问的是从1到n再回到1边不重复走的最短路,本质是找1到n的两条路径不重复的尽量短的路. #include<cstdio> #include<cstring> #includ ...

  4. [poj2135]Farm Tour(最小费用流)

    解题关键:最小费用流 代码一:bellma-ford $O(FVE)$  bellman-ford求最短路,并在最短路上增广,速度较慢 #include<cstdio> #include& ...

  5. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  6. 网络流(最小费用最大流):POJ 2135 Farm Tour

    Farm Tour Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: ...

  7. POJ Farm Tour

    Farm Tour 题目: 约翰有N块地,家在1号,而N号是个仓库.农场内有M条道路(双向的),道路i连接这ai号地和bi号地,长度为ci. 约翰希望依照从家里出发,经过若干地后达到仓库.然后再返回家 ...

  8. [网络流]Farm Tour(费用流

    Farm Tour 题目描述 When FJ's friends visit him on the farm, he likes to show them around. His farm compr ...

  9. Farm Tour(最小费用最大流模板)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18150   Accepted: 7023 Descri ...

随机推荐

  1. 异常:NSException和NSAssert的简单使用

    //断言 - (void)NSAssert_Test:(NSString *)string{ NSAssert(string == nil, @"string == kong or nil& ...

  2. RDLC系列之一 简单示例

    参照文章:http://www.cnblogs.com/waxdoll/archive/2006/07/24/458409.html#!comments 一.效果图

  3. 异步fifo的设计

    本文首先对异步 FIFO 设计的重点难点进行分析 最后给出详细代码 一.FIFO简单讲解 FIFO的本质是RAM, 先进先出 重要参数:fifo深度(简单来说就是需要存多少个数据)           ...

  4. [资源]PHP使用消息队列

    利用PHP操作Linux消息队列完成进程间通信 基于HTTP协议的轻量级开源简单队列服务:HTTPSQS[原创] Redis队列——PHP操作简单示例 入队操作 <?php $redis = n ...

  5. C语言 字符串操作两头堵模型

    //字符串操作两头堵模型练习 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> #inc ...

  6. Linux内核分析——第七周学习笔记20135308

    第七周 可执行程序的装载 一.预处理.编译.链接和目标文件的格式 1.可执行程序是怎么来的 C代码—>预处理—>汇编代码—>目标代码—>可执行文件 .asm汇编代码 .o目标码 ...

  7. 如何下载struts 2及其各个包的作用

    一.http://archive.apache.org/dist/struts/library/ 二. struts官网: http://struts.apache.org/ 进入主页后点击" ...

  8. Opencv step by step - 阈值化

    Opencv里面的阈值化做起来比较简单,只需要一个函数即可: /* Applies fixed-level threshold to grayscale image. This is a basic ...

  9. windows编程原理

    这里在学网络编程时遇到了讲解windows的编程,稍微整理一下windows编程原理,顺便复习一下. 首先,理解Windows 程序运行原理:Windows应用程序,操作系统,计算机硬件之间的相互关系 ...

  10. 3.SQLAlchemy文档-SQLAlchemy Core(中文版)

    这里的文描述了关于SQLAlchemy的的SQL渲染引擎的相关内容,包括数据库API的集成,事务的集成和数据架构描述服务.与以领域为中心的ORM使用模式相反,SQL表达式语言提供了一个数据构架为中心的 ...