题目描述

任何一个正整数都可以用2的幂次方表示。例如

    137=2^7+2^3+2^0         

同时约定方次用括号来表示,即a^b 可表示为a(b)。

由此可知,137可表示为:

    2(7)+2(3)+2(0)

进一步:7= 2^2+2+2^0 (2^1用2表示)

    3=2+2^0   

所以最后137可表示为:

    2(2(2)+2+2(0))+2(2+2(0))+2(0)

又如:

    1315=2^10 +2^8 +2^5 +2+1

所以1315最后可表示为:

    2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)

输入输出格式

输入格式:

一个正整数n(n≤20000)。

输出格式:

符合约定的n的0,2表示(在表示中不能有空格)

输入输出样例

输入样例#1:

1315
输出样例#1:

2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)

代码

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
int n;
void trans(int i){
if(i==) cout<<"2(2(2+2(0))+2(2)+2)";
if(i==) cout<<"2(2(2+2(0))+2(2)+2(0))";
if(i==) cout<<"2(2(2+2(0))+2(2))";
if(i==) cout<<"2(2(2+2(0))+2+2(0))";
if(i==) cout<<"2(2(2+2(0))+2)";
if(i==) cout<<"2(2(2+2(0))+2(0))";
if(i==) cout<<"2(2(2+2(0)))";
if(i==) cout<<"2(2(2)+2+2(0))";
if(i==) cout<<"2(2(2)+2)";
if(i==) cout<<"2(2(2)+2(0))";
if(i==) cout<<"2(2(2))";
if(i==) cout<<"2(2+2(0))";
if(i==) cout<<"2(2)";
if(i==) cout<<"";
if(i==) cout<<"2(0)";
}
int main(){
cin>>n;
while(n>){
for(int i=;i>=;i--){
int k=pow(,i);
if(k<=n){
trans(i);
n-=k;
if(n>) cout<<'+';
break;
}
}
}
return ;
}

2^14=16384

2^15=32768

我这应该不算打表吧?

洛谷 P1010 幂次方 Label:模拟的更多相关文章

  1. 解题笔记-洛谷-P1010 幂次方

    0 题面 题目描述 任何一个正整数都可以用2的幂次方表示.例如 137=2^7+2^3+2^0 同时约定方次用括号来表示,即a^b 可表示为a(b). 由此可知,137可表示为: 2(7)+2(3)+ ...

  2. 洛谷P1010 幂次方

    题目描述 任何一个正整数都可以用2的幂次方表示.例如 137=2^7+2^3+2^0 同时约定方次用括号来表示,即a^b 可表示为a(b). 由此可知,137137可表示为: 2(7)+2(3)+2( ...

  3. 洛谷 P1010 幂次方

    做了好久,递归拆吧 #include<iostream>#include<cstdio>#include<cmath>using namespace std;int ...

  4. 集训作业 洛谷P1010 幂次方

    这个…… 这个题看上去有点难的样子. 仔细看看,感觉有点简单.啊,是递归啊,正经的看一看,好像是把一个数分成2的几次方的和. 然后余数和比他小的最大的2的次方数如果不是2的一次方或者2的0次方,就继续 ...

  5. Java实现 洛谷 P1010 幂次方

    输入输出样例 输入 #1 1315 输出 #1 2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0) import java.util.Scanner; pu ...

  6. P1010 幂次方 递归模拟

    题目描述 任何一个正整数都可以用22的幂次方表示.例如 137=2^7+2^3+2^0137=27+23+20 同时约定方次用括号来表示,即a^bab 可表示为a(b)a(b). 由此可知,13713 ...

  7. 洛谷 P1033 自由落体 Label:模拟&&非学习区警告

    题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g* ...

  8. 2021.07.26 P1010 幂次方(数论)

    2021.07.26 P1010 幂次方(数论) [P1010 NOIP1998 普及组] 幂次方 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.二进制 题意: 用20 ...

  9. 洛谷 P5594 【XR-4】模拟赛

    洛谷 P5594 [XR-4]模拟赛 洛谷传送门 题目描述 X 校正在进行 CSP 前的校内集训. 一共有 nn 名 OIer 参与这次集训,教练为他们精心准备了 mm 套模拟赛题. 然而,每名 OI ...

随机推荐

  1. 三款SDR平台对比:HackRF,bladeRF和USRP

    这篇文章是Taylor Killian今年8月发表在自己的博客上的.他对比了三款平价的SDR平台,认为这三款产品将是未来一年中最受欢迎的SDR平台.我觉得这篇文章很有参考价值,简单翻译一份转过来.原文 ...

  2. poj1753枚举

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33670   Accepted: 14713 Descr ...

  3. 《linux备份与恢复之一》.tar.bz2与.tar.gz格式的文本压缩率比较

    对于文本压缩,据说bzip的算法要优于gzip,从而拥有更好的压缩比.特地找了两个文件来做一下测试,以下为测试结果:   (1)源文件为591MB, .tar.bz2文件为61MB(10.32%), ...

  4. .NET Reflector 7.6.1.824 Edition .NET程序反编译神器(附插件安装教程2012-10-13更新) 完全破解+使用教程

    原文来自VAllen cnblogs 一.使用教程1.解压后,双击Reflector.exe,如果有选择默认版本的.Net Framework,根据需要选择即可.你选择的版本不同则出现的默认程序集也不 ...

  5. 24.栈的push和pop序列[StackPushPopSequence]

    [题目] 输入两个整数序列.其中一个序列表示栈的push顺序,判断另一个序列有没有可能是对应的pop顺序.为了简单起见,我们假设push序列的任意两个整数都是不相等的. 比如输入的push序列是1.2 ...

  6. spring mvc form表单提交乱码

    spring mvc form表单submit直接提交出现乱码.导致乱码一般是服务器端和页面之间编码不一致造成的.根据这一思路可以依次可以有以下方案. 1.jsp页面设置编码 <%@ page ...

  7. Android简易数据存储之SharedPreferences

    Andorid提供了多种数据存储的方式,例如前面说到的“Android数据存储之SQLite的操作”是用于较复杂的数据存储.然而,如果有些简单的数据存储如果采用SQLite的方式的话会显得比较笨重.例 ...

  8. 解决kettle配置文件中的中文乱码

    在日常开发中有时候配置文件会出现中文(如config.properties 里有中文),为了避免出现乱码,因而要转成unicode编码. 1.在设置变量的javascript(转换中的JavaScri ...

  9. Java for LeetCode 059 Spiral Matrix II

    Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. For ...

  10. ext树表

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2UAAAHwCAIAAACpIFDdAAAgAElEQVR4nOy9f5Qb5ZnvWWQZlnO5Oc ...