HDU2841大同小异。

设左下角的点为(1,1),如果(1,1)->(x,y)和(1,1)->(x',y')向量平行,那只有在前面的能被看见。然后就是求x-1、y-1不互质的数对个数。

而x或y等于1可以另外讨论一下,就是当n不等于1时就有两个,n等于1就特判一下。

那么就用欧拉函数计数了:枚举x-1,累加小于x-1与x-1互质的个数,即合法的y-1的个数;结果还要*2,因为还有一半对称的y-1>x-1的情况;此外x-1=y-1多算了一次,减去1即可。

 #include<cstdio>
#include<cstring>
using namespace std;
#define MAXN 43210
int phi[MAXN],prime[MAXN];
bool vis[MAXN];
void euler(){
phi[]=;
int tot=;
for(int i=; i<MAXN; ++i){
if(!vis[i]){
prime[tot++]=i;
phi[i]=i-;
}
for(int j=; j<tot; ++j){
if(i*prime[j]>MAXN) break;
vis[i*prime[j]]=;
if(i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}else{
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
}
int main(){
euler();
int n;
scanf("%d",&n);
if(n==){
putchar('');
return ;
}
int res=;
for(int i=; i<=n; ++i){
res+=phi[i-]<<;
}
printf("%d",res-);
return ;
}

BZOJ2190 [SDOI2008]仪仗队(欧拉函数)的更多相关文章

  1. BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  2. [bzoj2190][SDOI2008]仪仗队 ——欧拉函数

    题解 以c点为(0, 0)建立坐标系,可以发现, 当(x,y)!=1,即x,y不互素时,(x,y)点一定会被点(x/n, y/n)遮挡. 所以点(x, y)被看到的充分必要条件是Gcd(x, y) = ...

  3. 【bzoj2190】[SDOI2008]仪仗队 欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  4. P2158 [SDOI2008]仪仗队 && 欧拉函数

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  5. P2158 [SDOI2008]仪仗队 欧拉函数模板

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  6. luogu2158 [SDOI2008]仪仗队 欧拉函数

    点 $ (i,j) $ 会看不见当有 $ k|i $ 且 $ k|j$ 时. 然后就成了求欧拉函数了. #include <iostream> #include <cstring&g ...

  7. 洛谷P2158 [SDOI2008]仪仗队 欧拉函数的应用

    https://www.luogu.org/problem/P2158 #include<bits/stdc++.h> #define int long long using namesp ...

  8. BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )

    假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...

  9. 2190: [SDOI2008]仪仗队(欧拉函数)

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3235  Solved: 2089 Description 作 ...

  10. [SDOI2008]仪仗队 (欧拉函数)

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

随机推荐

  1. spring 注解的总结

    一.java内置注解 1.@Target 表示该注解用于什么地方,可能的 ElemenetType 参数包括: ElemenetType.CONSTRUCTOR   构造器声明 ElemenetTyp ...

  2. [POJ1936]All in All

    [POJ1936]All in All 试题描述 You have devised a new encryption technique which encodes a message by inse ...

  3. 向着目标杀jj

     海外资深实力公司招聘:1.PHP工程师,18-25K2.UI设计师,15-25K3.前端工程师,18-25K4.Python工程师,18-25K5.DBA工程师,18-25K6.服务端工程师,18- ...

  4. HLG2035广搜

    Diablo Time Limit: 1000 MS Memory Limit: 65536 K Total Submit: 42(21 users) Total Accepted: 23(20 us ...

  5. 最长公共子串 NYOJ 36

    http://acm.nyist.net/JudgeOnline/problem.php?pid=36 最长公共子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 ...

  6. 【OpenStack】OpenStack系列3之Swift详解

    Swift安装部署(与keystone依赖包有冲突,需要安装不同版本eventlet) 参考:http://www.server110.com/openstack/201402/6662.html h ...

  7. Extjs中给同一个GridPanel中的事件添加参数的方法

    Extjs中给同一个GridPanel中的事件添加参数的方法: this.isUse = new Ext.Action({            text:'启用',            scope ...

  8. mybatis中的oracle和mysql分页

    这段时间一直在用mybatis+spring+springMVC的框架,总结点东西吧. mybatis的oracle分页写法: <?xml version="1.0" enc ...

  9. hadoop机架感知

    背景 分布式的集群通常包含非常多的机器,由于受到机架槽位和交换机网口的限制,通常大型的分布式集群都会跨好几个机架,由多个机架上的机器共同组成一个分布式集群.机架内的机器之间的网络速度通常都会高于跨机架 ...

  10. SQL表格

    LAMP - Linux  Apache MySQL PHP MySQL - 三个层次:文件层次,服务层次,界面 常用的数据类型:int 整数float double decimal 小数varcha ...