题目描述

Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家。现在,他正在为一个细胞实

验做准备工作:培养细胞样本。

Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个第 i 种细胞经过 1 秒钟可以分裂为

Si个同种细胞(Si为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,

进行培养。一段时间以后,再把培养皿中的所有细胞平均分入 M 个试管,形成 M 份样本,

用于实验。Hanks 博士的试管数 M 很大,普通的计算机的基本数据类型无法存储这样大的

M 值,但万幸的是,M 总可以表示为 m1的 m2次方,即

M = m1^m2

,其中 m1,m2均为基本

数据类型可以存储的正整数。

注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有 4 个细胞,

Hanks 博士可以把它们分入 2 个试管,每试管内 2 个,然后开始实验。但如果培养皿中有 5

个细胞,博士就无法将它们均分入 2 个试管。此时,博士就只能等待一段时间,让细胞们继

续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。

为了能让实验尽早开始,Hanks 博士在选定一种细胞开始培养后,总是在得到的细胞“刚

好可以平均分入 M 个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细

胞培养,可以使得实验的开始时间最早。

输入输出格式

输入格式:

第一行有一个正整数 N,代表细胞种数。

第二行有两个正整数 m1,m2,以一个空格隔开,

即表示试管的总数 M = m1^m2。

第三行有 N 个正整数,第 i 个数 Si表示第 i 种细胞经过 1 秒钟可以分裂成同种细胞的个

数。

输出格式:

输出文件 cell.out 共一行,为一个整数,表示从开始培养细胞到实验能够开始所经过的

最少时间(单位为秒)。

如果无论 Hanks 博士选择哪种细胞都不能满足要求,则输出整数-1。

 #include<cstdio>
#include<cmath>
struct prm
{
int x,t;
}m[];
int a[];
int main()
{
int i,j,k,n,p,q,m1,m2,x,y,z,cntm,ans,t;
bool ok;
scanf("%d",&n);
scanf("%d%d",&m1,&m2);
cntm=;
for (i=;m1!=;i++)
if (m1%i==)
{
cntm++;
m[cntm].x=i;
while (m1%i==)
{
m[cntm].t++;
m1/=i;
}
m[cntm].t*=m2;
}
ans=-;
for (i=;i<=n;i++)
scanf("%d",&a[i]);
for (i=;i<=n;i++)
{
p=;
ok=;
for (j=;j<=cntm;j++)
if (a[i]%m[j].x==)
{
t=;
while (a[i]%m[j].x==)
{
a[i]/=m[j].x;
t++;
}
if (m[j].t%t==) t=m[j].t/t;
else t=m[j].t/t+;
if (t>p) p=t;
}
else
{
ok=;
break;
}
if (ok&&(ans==-||p<ans)) ans=p;
}
printf("%d\n",ans);
}

题目可以转化成求方程ax=km1m2(k为整数)的最小整数解。【我也来试一试打公式】

先把m1质因数分解,再把每个次数都乘上m2就是题中的M质因数分解的结果。

方程如果有解,那么必须m1的每个因数都是a的因数,这样a经过幂之后才可能成为m1的倍数。在此基础上,取各个因数中次数相差最多(指的是倍数)的一个的倍数,就是x的最小值。

NOIP2009普及组细胞分裂(数论)——yhx的更多相关文章

  1. [NOIp2009普及组]细胞分裂

    思路: 首先将$30000$以内的所有质数求出,再对$m1$质因数分解. 对于每个$s$,计算它和$m1$的每个公共质因数的倍数关系,取$max$则为该细胞满足条件所花费的最少时间. 再对于每个细胞的 ...

  2. #include &lt;NOIP2009 Junior&gt; 细胞分裂 ——using namespace wxl;

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...

  3. [NOIP2009] 普及组

    多项式输出 模拟 /*by SilverN*/ #include<algorithm> #include<iostream> #include<cstring> # ...

  4. 洛谷 1067 NOIP2009 普及组 多项式输出

    [题解] 一道简单的模拟题.需要判一些特殊情况:第一项的正号不用输出,x的一次项不用输出指数,系数为0的项不用输出等等,稍微细心一下就好. #include<cstdio> #includ ...

  5. noip2017普及组

    过了这么久才来写博客,也是我这么一段时间都很低迷吧.... 老实来说,今年应该是要打提高组的...可还是打了普及组... 其实最猥琐的还是我连普及都写挂了,作为一个学了两年的人,图论,进阶dp都写过的 ...

  6. #include <NOIP2009 Junior> 细胞分裂 ——using namespace wxl;

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...

  7. cogs 466. [NOIP2009] 细胞分裂

    466. [NOIP2009] 细胞分裂 ★★   输入文件:cell.in   输出文件:cell.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述]    Hanks ...

  8. NOIP2002-2017普及组题解

    虽然普及组一般都是暴力省一,但是有一些题目还是挺难的qwq个人觉得能进TG的题目会在前面打上'*' NOIP2002(clear) #include<bits/stdc++.h> usin ...

  9. noip2017爆炸记——题解&总结&反省(普及组+提高组)

    相关链接: noip2018总结 noip2017是我见过的有史以来最坑爹的一场考试了. 今年北京市考点有一个是我们学校,我还恰好被分到了自己学校(还是自己天天上课的那个教室),于是我同时报了普及提高 ...

随机推荐

  1. 与众不同 windows phone (40) - 8.0 媒体: 音乐中心的新增功能, 图片中心的新增功能, 后台音乐播放的新增功能

    [源码下载] 与众不同 windows phone (40) - 8.0 媒体: 音乐中心的新增功能, 图片中心的新增功能, 后台音乐播放的新增功能 作者:webabcd 介绍与众不同 windows ...

  2. [c#] const 与 readonly

    c# 中 const 与 readonly 关键字看似相同,实则不同.重点在于确定值的时间. const const 很简单,就是一个常量,不可以被 static 修饰,因为被 const 修饰的字段 ...

  3. java基础练习[一]

    moka同学java学习笔记 package moka.hello; public class HelloWorld {     public static void main(String[] ar ...

  4. [程序人生]前途无"亮‘’的大学

    转眼之间就到大四了,今天晚上很迷茫,很纠结,想了好多,好多,真的,长大之后,自从第一次失恋之后,第一次会想到这么的多.     嗯,先自我介绍哈吧,我是从云南的大山里走出来的孩子,什么样的大山,就是到 ...

  5. mvc与三层结构终极区别

    http://blog.csdn.net/csh624366188/article/details/7183872 http://www.cnblogs.com/zhhh/archive/2011/0 ...

  6. jquery只能输入数字方法

    本方法为验证文本框的输入内容,如果输入的是数字,则提示"√".否则提示“必填,且只能输入数字字符”.在线体验效果:http://keleyi.com/keleyi/phtml/zz ...

  7. SAP数据更新的触发

    SAP 应用系统架构         应用层运行着DIALOG进程,每个DIALOG进程绑定一个数据库进程,DIALOG进程与GUI进行通信,每次GUI向应用服务器发送请求时都会通过dispatche ...

  8. access的逻辑类型

    Alter TABLE [表名] ADD [新增字段] BOOLEAN或者Alter TABLE [表名] ADD [新增字段] YESNO 或者Alter TABLE [表名] ADD [新增字段] ...

  9. .NET下Excel报表的打印

    说明:这是一个实验的小例子,在实际项目中使用时,一般Object[,] 对象的数据来源于数据库. 1. 实验环境 开发平台:Visual Studio 2010 测试模板:JBtest Excel:O ...

  10. iOS多线程-01-pthread与NSTread

    简介 恰当的使用多线程编程可以提供任务的执行效率和系统资源的利用率 多线程是为了提高资源利用率,和应用程序的响应速度,多个线程共享应用资源 每个应用程序都有一个主线程,通常用来做UI界面刷新等 比较耗 ...