Description

A simple cycle is a closed simple path, with no other repeated vertices or edges other than the starting and ending vertices. The length of a cycle is the number of vertices on it. Given an undirected graph G(V, E), you are to detect whether it contains a simple
cycle of length K. To make the problem easier, we only consider cases with small K here.

Input

There are multiple test cases.

The first line will contain a positive integer T (T ≤ 10) meaning the number of test cases.

For each test case, the first line contains three positive integers N, M and K ( N ≤ 50, M ≤ 500, 3 ≤ K ≤ 7). N is the number of vertices of the graph, M is the number of edges and K is the length of the cycle desired. Next follow M lines, each line contains
two integers A and B, describing an undirected edge AB of the graph. Vertices are numbered from 0 to N-1.

Output

For each test case, you should output “YES” in one line if there is a cycle of length K in the given graph, otherwise output “NO”.

Sample Input

2
6 8 4
0 1
1 2
2 0
3 4
4 5
5 3
1 3
2 4
4 4 3
0 1
1 2
2 3
3 0

Sample Output

YES
NO

HINT

Source


题意:
问在一个图里面是否能找到一个长度为k的环

思路:
直接搜索看点是否反复訪问

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 200005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+7;
vector<int> a[550];
int vis[550],flag;
int n,m,k; void dfs(int now,int pos,int pre)
{ if(vis[now])
{
if(pos-vis[now]==k)
flag = 1;
return;
}
if(flag)
return;
vis[now]=pos;
int i,len = a[now].size();
for(i = 0; i<len; i++)
{
if(a[now][i]!=pre)
dfs(a[now][i],pos+1,now); }
} int main()
{
int i,j,x,y,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&k);
for(i = 0; i<=n; i++)
a[i].clear();
flag = 0;
while(m--)
{
scanf("%d%d",&x,&y);
a[x].push_back(y);
a[y].push_back(x);
}
for(i=0; i<n; i++)
{
MEM(vis,0);
dfs(i,1,-1);
}
printf("%s\n",flag?"YES":"NO");
} return 0;
}

CSU1660: K-Cycle的更多相关文章

  1. 寒假训练——搜索 K - Cycle

    A tournament is a directed graph without self-loops in which every pair of vertexes is connected by ...

  2. 统计学习方法 | 第3章 k邻近法

    第3章 k近邻法   1.近邻法是基本且简单的分类与回归方法.近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的个最近邻训练实例点,然后利用这个训练实例点的类的多数来预测输入实例 ...

  3. KNN算法与Kd树

    最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知 ...

  4. 【AStar】初赛第一场

    1. All X1.1 基本思路k和c的范围都不大,因此可以考虑迭代找循环节,然后求余数,判定是否相等.这题还是挺简单的.1.2 代码 /* 5690 */ #include <iostream ...

  5. leetcode — permutation-sequence

    import java.util.ArrayList; import java.util.List; /** * Source : https://oj.leetcode.com/problems/p ...

  6. 【codevs4919】线段树练习4

    题目大意:维护一个长度为 N 的序列,支持两种操作:区间加,区间查询有多少数是 7 的倍数. 题解:在每个线段树中维护一个权值数组 [0,6],由于个数显然支持区间可加性,因此可用线段树来维护. 代码 ...

  7. LA 7056 Colorful Toy Polya定理

    题意: 平面上给出一个\(N\)个点\(M\)条边的无向图,要用\(C\)种颜色去给每个顶点染色. 如果一种染色方案可以旋转得到另一种染色方案,那么说明这两种染色方案是等价的. 求所有染色方案数 \( ...

  8. django模型操作

    Django-Model操作数据库(增删改查.连表结构) 一.数据库操作 1.创建model表        

  9. LEETCODE —— Linked List Cycle [Floyd's cycle-finding algorithm]

    Linked List Cycle Given a linked list, determine if it has a cycle in it. Follow up:Can you solve it ...

  10. 【leetcode】Linked List Cycle II (middle)

    Given a linked list, return the node where the cycle begins. If there is no cycle, return null. Foll ...

随机推荐

  1. 外连接OUTER JOIN(三十五)

    外连接OUTER JOIN   LEFT [OUTER] JOIN,左外连接 显示左表的全部记录及右表符合连接条件的记录 下面我们来演示一下,操作命令及部分结果如下: SELECT goods_id, ...

  2. cors跨域的前端实现---根据资料整合的

    1.服务端 搁response中增加Access-Control-Allow-Origin:‘*’ eg:  context.Response.AddHeader("Access-Contr ...

  3. HTML5多文件上传

    文章转载自:http://xiechengxiong.com/288.html 一个简单的HTML5多文件上传demo. 以前我们上传文件的时候,如果通过js上传,我们无法在本地直接预览图片,还得跑到 ...

  4. hiho week 37 P1 : 二分·二分查找之k小数

    P1 : 二分·二分查找之k小数 Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB 描述 在上一回里我们知道Nettle在玩&l ...

  5. [Parcel] Bundle a React App with Parcel

    Parcel comes in as the new cool kid in the bundlers world. Unlike other bundlers which take lots of ...

  6. Objective-C method及相关方法分析

    ## Objective-C method及相关方法分析 转载请注名出处 [http://blog.csdn.net/uxyheaven](http://blog.csdn.net/uxyheaven ...

  7. android5.x加入sim1,sim2标识

    1,mobile_signal_group.xml  ..... <FrameLayout android:id="@+id/mobile_combo" android:la ...

  8. Intersection between 2d conic in OpenCASCADE

    Intersection between 2d conic in OpenCASCADE eryar@163.com Abstract. OpenCASCADE provides the algori ...

  9. 30.IntellJ Idea 导入已存在的Maven项目

    转自:https://blog.csdn.net/epdc2/article/details/53767386

  10. JCameraView 仿微信拍照Android控件(点击拍照,长按录小视频)

    JCameraView 控件介绍 这是一个模仿微信拍照的Android开源控件,主要的功能有如下: 点击拍照. 前后摄像头的切换. 长按录视频(视频长度为10秒内). 长按录视频的时候,手指上滑可以放 ...