CSU1660: K-Cycle
Description
A simple cycle is a closed simple path, with no other repeated vertices or edges other than the starting and ending vertices. The length of a cycle is the number of vertices on it. Given an undirected graph G(V, E), you are to detect whether it contains a simple
cycle of length K. To make the problem easier, we only consider cases with small K here.
Input
There are multiple test cases.
The first line will contain a positive integer T (T ≤ 10) meaning the number of test cases.
For each test case, the first line contains three positive integers N, M and K ( N ≤ 50, M ≤ 500, 3 ≤ K ≤ 7). N is the number of vertices of the graph, M is the number of edges and K is the length of the cycle desired. Next follow M lines, each line contains
two integers A and B, describing an undirected edge AB of the graph. Vertices are numbered from 0 to N-1.
Output
For each test case, you should output “YES” in one line if there is a cycle of length K in the given graph, otherwise output “NO”.
Sample Input
2
6 8 4
0 1
1 2
2 0
3 4
4 5
5 3
1 3
2 4
4 4 3
0 1
1 2
2 3
3 0
Sample Output
YES
NO
HINT
Source
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 200005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+7;
vector<int> a[550];
int vis[550],flag;
int n,m,k; void dfs(int now,int pos,int pre)
{ if(vis[now])
{
if(pos-vis[now]==k)
flag = 1;
return;
}
if(flag)
return;
vis[now]=pos;
int i,len = a[now].size();
for(i = 0; i<len; i++)
{
if(a[now][i]!=pre)
dfs(a[now][i],pos+1,now); }
} int main()
{
int i,j,x,y,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&k);
for(i = 0; i<=n; i++)
a[i].clear();
flag = 0;
while(m--)
{
scanf("%d%d",&x,&y);
a[x].push_back(y);
a[y].push_back(x);
}
for(i=0; i<n; i++)
{
MEM(vis,0);
dfs(i,1,-1);
}
printf("%s\n",flag?"YES":"NO");
} return 0;
}
CSU1660: K-Cycle的更多相关文章
- 寒假训练——搜索 K - Cycle
A tournament is a directed graph without self-loops in which every pair of vertexes is connected by ...
- 统计学习方法 | 第3章 k邻近法
第3章 k近邻法 1.近邻法是基本且简单的分类与回归方法.近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的个最近邻训练实例点,然后利用这个训练实例点的类的多数来预测输入实例 ...
- KNN算法与Kd树
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知 ...
- 【AStar】初赛第一场
1. All X1.1 基本思路k和c的范围都不大,因此可以考虑迭代找循环节,然后求余数,判定是否相等.这题还是挺简单的.1.2 代码 /* 5690 */ #include <iostream ...
- leetcode — permutation-sequence
import java.util.ArrayList; import java.util.List; /** * Source : https://oj.leetcode.com/problems/p ...
- 【codevs4919】线段树练习4
题目大意:维护一个长度为 N 的序列,支持两种操作:区间加,区间查询有多少数是 7 的倍数. 题解:在每个线段树中维护一个权值数组 [0,6],由于个数显然支持区间可加性,因此可用线段树来维护. 代码 ...
- LA 7056 Colorful Toy Polya定理
题意: 平面上给出一个\(N\)个点\(M\)条边的无向图,要用\(C\)种颜色去给每个顶点染色. 如果一种染色方案可以旋转得到另一种染色方案,那么说明这两种染色方案是等价的. 求所有染色方案数 \( ...
- django模型操作
Django-Model操作数据库(增删改查.连表结构) 一.数据库操作 1.创建model表
- LEETCODE —— Linked List Cycle [Floyd's cycle-finding algorithm]
Linked List Cycle Given a linked list, determine if it has a cycle in it. Follow up:Can you solve it ...
- 【leetcode】Linked List Cycle II (middle)
Given a linked list, return the node where the cycle begins. If there is no cycle, return null. Foll ...
随机推荐
- Linux150个常用指令
线上查询及帮助命令(2个) 文件和目录操作命令(18个) 查看文件及内容处理命令(21个) 文件压缩及解压缩命令(4个) 信息显示命令(11个) 搜索文件命令(4个) 用户管理命令(10个) 基础网络 ...
- SQL中NUMERIC和DECIMAL的区别
numeric 和 decimal 数据类型的默认最大精度值是 38.在 Transact-SQL 中,numeric 与 decimal 数据类型在功能上等效. decimal(numeric ) ...
- 在performancepoint里面建立数据源的时候,总是发生以下的报警
就是我在performancepoint里面建立数据源的时候,总是发生以下的报警. 在管理中心主页的“应用程序管理”部分,单击“管理服务应用程序”,然后单击“PerformancePoint Se ...
- COWRUN
USACO COWRUN 随机化搜索+双重递归调用 题面描述:给出8*N(<=14)组牌,每次按顺序选择8张,FJ可以选择前4张或者后4张,COW从FJ选出的牌中选择前两张或者后两张,然后COW ...
- JAVA 获取访问者IP
* 获取访问者IP * * 在一般情况下使用Request.getRemoteAddr()即可,但是经过nginx等反向代理软件后,这个方法会失效. * * 本方法先从Header中获取X-Real- ...
- 【Henu ACM Round#16 B】 Bear and Colors
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] O(n^2)枚举每一个区间. 然后维护这个区间里面的"统治数字"是什么. 对于每个区间cnt[统治数字]++; ...
- Linux学习总结(7)——阿里云centeros服务器上安装 jdk,tomcat,mysql
查看服务器的系统版本 # cat /etc/issue 查看服务器是64位还是32位 #uname -a 或者用:#getconf LONG_BIT 查看当前有没有安装jdk #rpm -q ...
- Add Webhooks to Your API the Right Way
Add Webhooks to Your API the Right Way Adam DuVander / December 15, 2016 In the last 10 years, APIs ...
- CentOS6.4安装Docker
首先,须要安装EPEL仓库 # wget http://mirrors.yun-idc.com/epel/6/i386/epel-release-6-8.noarch.rpm # rpm -ivh e ...
- spring 使用c3po连接池
1 数据源:能够简单理解为数据的来源. 2 连接池:是缓存一定数量的数据库连接,当程序须要数据库连接的时候,直接在连接池中获取空暇的连接,使用完再放回连接池中,此连接又变成空暇状态,等待下一次连接. ...