[ZOJ]3541 Last Puzzle (区间DP)
ZOJ 3541
题目大意:有n个按钮,第i个按钮在按下ti 时间后回自动弹起,每个开关的位置是di,问什么策略按开关可以使所有的开关同时处于按下状态
Description
There is one last gate between the hero and the dragon. But opening the gate isn't an easy task.
There were n buttons list in a straight line in front of the gate and each with an integer on it. Like other puzzles the hero had solved before, if all buttons had been pressed down in any moment, the gate would open. So, in order to solve the puzzle, the hero must press all the button one by one.
After some trials, the hero found that those buttons he had pressed down would pop up after a while before he could press all the buttons down. He soon realized that the integer on the button is the time when the button would automatic pop up after pressing it, in units of second. And he measured the distance between every button and the first button, in units of maximum distance the hero could reach per second. Even with this information, the hero could not figure out in what order he should press the buttons. So you talent programmers, are assigned to help him solve the puzzle.
To make the puzzle easier, assuming that the hero always took integral seconds to go from one button to another button and he took no time turnning around or pressing a button down. And the hero could begin from any button.
Input
The input file would contain multiple cases. Each case contains three lines. Process to the end of file.
The first line contains a single integer n(1 ≤ n ≤200), the number of buttons.
The second line contains n integers T1, T2, ..., Tn, where Ti(1 ≤ Ti ≤ 1,000,000) is the time the ith button would automatic pop up after pressing it, in units of second.
The third line contains n integers D1, D2, ..., Dn, where Di(1 ≤ Di ≤ 1,000,000) is the time hero needed to go between the ith button and the first button, in units of second. The sequence will be in ascending order and the first element is always 0.
Output
Output a single line containing n integers which is the sequence of button to press by the hero. If there are multiply sequences, anyone will do. If there is no way for the hero to solve the puzzle, just output "Mission Impossible"(without quote) in a single line.
Sample Input
2
4 3
0 3
2
3 3
0 3
4
5 200 1 2
0 1 2 3
Sample Output
1 2
Mission Impossible
1 2 4 3
Hint
In the second sample, no matter which button the hero pressed first, the button would always pop up before he press the other button. So there is no way to make all the button pressed down.
Solution
本题很容易想到区间DP,对于一个区间,一定是从某个端点开始,因为如果从中间开始之后按别的开关时一定会经过这个点。
状态
\(f_{i,j,0/1}\)
表示区间[i,j]从左/右端点开始的最小时间。
状态转移方程见代码。
//Writer : Hsz %WJMZBMR%tourist%hzwer
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <vector>
#include <cstdlib>
#include <algorithm>
const int inf=0x3fffffff;
#define LL long long
using namespace std;
const int N=222;
int n;
LL t[N],d[N],f[N][N][2];
bool way[N][N][2];
int main() {
while(scanf("%d",&n)!=EOF) {
memset(f,0,sizeof f);
for(int i=1; i<=n; i++)
scanf("%lld",&t[i]);
for(int i=1; i<=n; i++)
scanf("%lld",&d[i]);
for(int l=2; l<=n; l++) {
for(int i=1; i+l-1<=n; i++) {
int j=i+l-1;
if(f[i+1][j][0]+d[i+1]-d[i]<f[i+1][j][1]+d[j]-d[i])
f[i][j][0]=f[i+1][j][0]+d[i+1]-d[i],way[i][j][0]=0;
else f[i][j][0]=f[i+1][j][1]+d[j]-d[i],way[i][j][0]=1;
if(t[i]<=f[i][j][0]||f[i][j][0]>=inf)
f[i][j][0]=inf;
if(f[i][j-1][1]+d[j]-d[j-1]<=f[i][j-1][0]+d[j]-d[i])
f[i][j][1]=f[i][j-1][1]+d[j]-d[j-1],way[i][j][1]=1;
else f[i][j][1]=f[i][j-1][0]+d[j]-d[i],way[i][j][1]=0;
if(t[j]<=f[i][j][1]||f[i][j][1]>=inf)
f[i][j][1]=inf;
}
}
int l,r,v;
if(f[1][n][0]<inf) {
printf("1");
l=2,r=n,v=way[1][n][0];
} else if(f[1][n][1]<inf) {
printf("%d",n);
l=1,r=n-1,v=way[1][n][1];
} else {
puts("Mission Impossible");
continue;
}
while(l<=r) {
if(!v) printf(" %d",l),v=way[l][r][0],l++;
else printf(" %d",r),v=way[l][r][1],r--;
}
printf("\n");
}
return 0;
}
[ZOJ]3541 Last Puzzle (区间DP)的更多相关文章
- ZOJ 3469 Food Delivery 区间DP
这道题我不会,看了网上的题解才会的,涨了姿势,现阶段还是感觉区间DP比较难,主要是太弱...QAQ 思路中其实有贪心的意思,n个住户加一个商店,分布在一维直线上,应该是从商店开始,先向两边距离近的送, ...
- POJ1651:Multiplication Puzzle(区间DP)
Description The multiplication puzzle is played with a row of cards, each containing a single positi ...
- poj 1651 Multiplication Puzzle (区间dp)
题目链接:http://poj.org/problem?id=1651 Description The multiplication puzzle is played with a row of ca ...
- zoj 3469 Food Delivery 区间dp + 提前计算费用
Time Limit: 2 Seconds Memory Limit: 65536 KB When we are focusing on solving problems, we usual ...
- ZOJ - 3469 Food Delivery (区间dp)
When we are focusing on solving problems, we usually prefer to stay in front of computers rather tha ...
- ZOJ 3469 Food Delivery(区间DP好题)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4255 题目大意:在x轴上有n个客人,每个客人每分钟增加的愤怒值不同. ...
- POJ 1651 Multiplication Puzzle 区间dp(水
题目链接:id=1651">点击打开链 题意: 给定一个数组,每次能够选择内部的一个数 i 消除,获得的价值就是 a[i-1] * a[i] * a[i+1] 问最小价值 思路: dp ...
- POJ1651Multiplication Puzzle[区间DP]
Multiplication Puzzle Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8737 Accepted: ...
- ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)
Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut t ...
随机推荐
- [bzoj1614][Usaco2007Jan]Telephone Lines 架设电话线_二分答案_最短路
Telephone Lines bzoj-1614 Usaco-2007Jan 题目大意:给你一个n个点m条边的带边权无向图,求最短路.可以选取k条边免费. 注释:$1\le n\le 10^3$,$ ...
- net_->ForwardBackward()的大致梳理
net_->ForwardBackward()方法在net.hpp文件中 Dtype ForwardBackward() { Dtype loss; Forward(&loss); Ba ...
- AC自己主动机模板(数组实现版)
BY 九野 做了一道题,用我的那种写法华丽丽的超时了.,无奈学一学数组实现的 #include<stdio.h> #include<string.h> #include< ...
- Keil5.15使用GCC编译器链接.a库文件
我们知道,当使用第三方的代码时,人家有可能会扔个Lib文件给你.这时候,别人仅仅要提供header文件给你,则你就能够通过Lib文件及header的函数声明,对Lib中的函数进行调用.在Keil中假设 ...
- Android开发时经经常使用的LogUtil
在开发过程中经经常使用到Log.我们常写的一种方式就是自己定义一个LogUtil工具类 private static boolean LOGV = true; private static boole ...
- CSU 1506 Problem D: Double Shortest Paths(最小费用最大流)
题意:2个人从1走到n,假设一条路第一次走则是价值di,假设第二次还走这条路则须要价值di+ai,要你输出2个人到达终点的最小价值! 太水了!一条边建2次就OK了.第一次价值为di,第二次为ai+di ...
- luogu4180 次小生成树Tree 树上倍增
题目:求一个无向图的严格次小生成树(即次小生成树的边权和严格小于最小生成树的边权和) 首先求出图中的最小生成树.任意加一条树外边都会导致环的出现.我们现在目标是在树外边集合B中,找到边b∈B,a∈b所 ...
- java 10000的阶乘
package test; import java.math.BigInteger; import java.util.ArrayList; import java.util.List; import ...
- android监听虚拟按键的显示与隐藏【转】
本文转载自:http://blog.csdn.net/u014583590/article/details/55263141 虚拟按键在华为手机中大量存在,而虚拟按键的存在无疑增加了屏幕适配的难度,往 ...
- 关于Spring中的<context:annotation-config/>配置作用
转自:https://www.cnblogs.com/iuranus/archive/2012/07/19/2599084.html 当我们需要使用BeanPostProcessor时,直接在Spri ...