ZOJ 3541

题目大意:有n个按钮,第i个按钮在按下ti 时间后回自动弹起,每个开关的位置是di,问什么策略按开关可以使所有的开关同时处于按下状态


Description


There is one last gate between the hero and the dragon. But opening the gate isn't an easy task.

There were n buttons list in a straight line in front of the gate and each with an integer on it. Like other puzzles the hero had solved before, if all buttons had been pressed down in any moment, the gate would open. So, in order to solve the puzzle, the hero must press all the button one by one.

After some trials, the hero found that those buttons he had pressed down would pop up after a while before he could press all the buttons down. He soon realized that the integer on the button is the time when the button would automatic pop up after pressing it, in units of second. And he measured the distance between every button and the first button, in units of maximum distance the hero could reach per second. Even with this information, the hero could not figure out in what order he should press the buttons. So you talent programmers, are assigned to help him solve the puzzle.

To make the puzzle easier, assuming that the hero always took integral seconds to go from one button to another button and he took no time turnning around or pressing a button down. And the hero could begin from any button.

Input


The input file would contain multiple cases. Each case contains three lines. Process to the end of file.

The first line contains a single integer n(1 ≤ n ≤200), the number of buttons.

The second line contains n integers T1, T2, ..., Tn, where Ti(1 ≤ Ti ≤ 1,000,000) is the time the ith button would automatic pop up after pressing it, in units of second.

The third line contains n integers D1, D2, ..., Dn, where Di(1 ≤ Di ≤ 1,000,000) is the time hero needed to go between the ith button and the first button, in units of second. The sequence will be in ascending order and the first element is always 0.

Output


Output a single line containing n integers which is the sequence of button to press by the hero. If there are multiply sequences, anyone will do. If there is no way for the hero to solve the puzzle, just output "Mission Impossible"(without quote) in a single line.

Sample Input


2
4 3
0 3
2
3 3
0 3
4
5 200 1 2
0 1 2 3

Sample Output


1 2
Mission Impossible
1 2 4 3

Hint


In the second sample, no matter which button the hero pressed first, the button would always pop up before he press the other button. So there is no way to make all the button pressed down.

Solution


本题很容易想到区间DP,对于一个区间,一定是从某个端点开始,因为如果从中间开始之后按别的开关时一定会经过这个点。

状态

\(f_{i,j,0/1}\)

表示区间[i,j]从左/右端点开始的最小时间。

状态转移方程见代码。

//Writer : Hsz %WJMZBMR%tourist%hzwer
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <vector>
#include <cstdlib>
#include <algorithm>
const int inf=0x3fffffff;
#define LL long long
using namespace std;
const int N=222;
int n;
LL t[N],d[N],f[N][N][2];
bool way[N][N][2];
int main() {
while(scanf("%d",&n)!=EOF) {
memset(f,0,sizeof f);
for(int i=1; i<=n; i++)
scanf("%lld",&t[i]);
for(int i=1; i<=n; i++)
scanf("%lld",&d[i]);
for(int l=2; l<=n; l++) {
for(int i=1; i+l-1<=n; i++) {
int j=i+l-1; if(f[i+1][j][0]+d[i+1]-d[i]<f[i+1][j][1]+d[j]-d[i])
f[i][j][0]=f[i+1][j][0]+d[i+1]-d[i],way[i][j][0]=0; else f[i][j][0]=f[i+1][j][1]+d[j]-d[i],way[i][j][0]=1; if(t[i]<=f[i][j][0]||f[i][j][0]>=inf)
f[i][j][0]=inf; if(f[i][j-1][1]+d[j]-d[j-1]<=f[i][j-1][0]+d[j]-d[i])
f[i][j][1]=f[i][j-1][1]+d[j]-d[j-1],way[i][j][1]=1; else f[i][j][1]=f[i][j-1][0]+d[j]-d[i],way[i][j][1]=0; if(t[j]<=f[i][j][1]||f[i][j][1]>=inf)
f[i][j][1]=inf;
}
}
int l,r,v;
if(f[1][n][0]<inf) {
printf("1");
l=2,r=n,v=way[1][n][0];
} else if(f[1][n][1]<inf) {
printf("%d",n);
l=1,r=n-1,v=way[1][n][1];
} else {
puts("Mission Impossible");
continue;
}
while(l<=r) {
if(!v) printf(" %d",l),v=way[l][r][0],l++;
else printf(" %d",r),v=way[l][r][1],r--;
}
printf("\n");
}
return 0;
}

[ZOJ]3541 Last Puzzle (区间DP)的更多相关文章

  1. ZOJ 3469 Food Delivery 区间DP

    这道题我不会,看了网上的题解才会的,涨了姿势,现阶段还是感觉区间DP比较难,主要是太弱...QAQ 思路中其实有贪心的意思,n个住户加一个商店,分布在一维直线上,应该是从商店开始,先向两边距离近的送, ...

  2. POJ1651:Multiplication Puzzle(区间DP)

    Description The multiplication puzzle is played with a row of cards, each containing a single positi ...

  3. poj 1651 Multiplication Puzzle (区间dp)

    题目链接:http://poj.org/problem?id=1651 Description The multiplication puzzle is played with a row of ca ...

  4. zoj 3469 Food Delivery 区间dp + 提前计算费用

    Time Limit: 2 Seconds      Memory Limit: 65536 KB When we are focusing on solving problems, we usual ...

  5. ZOJ - 3469 Food Delivery (区间dp)

    When we are focusing on solving problems, we usually prefer to stay in front of computers rather tha ...

  6. ZOJ 3469 Food Delivery(区间DP好题)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4255 题目大意:在x轴上有n个客人,每个客人每分钟增加的愤怒值不同. ...

  7. POJ 1651 Multiplication Puzzle 区间dp(水

    题目链接:id=1651">点击打开链 题意: 给定一个数组,每次能够选择内部的一个数 i 消除,获得的价值就是 a[i-1] * a[i] * a[i+1] 问最小价值 思路: dp ...

  8. POJ1651Multiplication Puzzle[区间DP]

    Multiplication Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8737   Accepted:  ...

  9. ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)

    Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut t ...

随机推荐

  1. WIN7通过批处理开启/禁用无线网卡

    哥比較懒,直接上步骤: 1.看自己的电脑是否有devcon.exe 这个软件,能够直接在WINDOWS文件夹的SYSTEM32文件夹下面搜索.也能够通过命令行RUN-----------CMD---- ...

  2. POJ 题目3020 Antenna Placement(二分图)

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7011   Accepted: 3478 ...

  3. C++设计模式之状态模式(二)

    2.智能空调的设计与实现 某软件公司将开发一套智能空调系统: 系统检測到温度处于20---30度之间,则切换到常温状态:温度处于30---45度,则切换到制冷状态: 温度小于20度,则切换到制热状态. ...

  4. ZOJ 1654 Place the Robots(最大匹配)

    Robert is a famous engineer. One day he was given a task by his boss. The background of the task was ...

  5. Android利用Intent与其它应用交互

    前言: 上一篇博客给大家聊了Intent的定义.分类.属性和功能,相信大家对于Intent在Android中的作用已经清楚,这一篇博客将会给大家聊Intent的使用方法. Android系统的一个重要 ...

  6. [SPOJ 30669] Ada and Trip

    [题目链接] https://www.spoj.com/problems/ADATRIP/ [算法] 直接使用dijkstra堆优化算法即可 [代码] #include<bits/stdc++. ...

  7. LINUX/UNIX找回删除的文件

    当Linux计算机受到入侵时,常见的情况是日志文件被删除,以掩盖攻击者的踪迹.管理错误也可能导致意外删除重要的文件,比如在清理旧日志时,意外地删除了数据库的活动事务日志.有时可以通过lsof来恢复这些 ...

  8. [jqpolt] formatString 日期格式化列表

    // 年 %Y   2008 %y   08 // 月 %m   09 %#m   9 %B   September %b   Sep // 日 %d   05 %#d   5 %e   5 %A   ...

  9. Citrix架构

    本图为citrix在Azure上的基本架构 包含了netscaler, VDA, DDC, AD四台服务器以及Azure SQL服务

  10. linux 标准输出和后台运行

    一.后台运行程序 至需要在命令后面加上一个 & 即可 # command & 例如: python test.py & 二.标准输出.标准错误输出 # command > ...