Prime Numbers

 Descriptions:

A prime number is a natural number which has exactly two distinct natural number divisors: 1 and itself. For example, the first four prime numbers are: 2, 3, 5 and 7.

Write a program which reads a list of N integers and prints the number of prime numbers in the list.

Input

The first line contains an integer N, the number of elements in the list.

N numbers are given in the following lines.

Output

Print the number of prime numbers in the given list.

Constraints

1 ≤ N ≤ 10000

2 ≤ an element of the list ≤ 108

Sample Input 1

5
2
3
4
5
6

Sample Output 1

3

Sample Input 2

11
7
8
9
10
11
12
13
14
15
16
17

Sample Output 2

4

题目链接:

https://vjudge.net/problem/Aizu-ALDS1_1_C

题目大意:
输入n个数,判断里面有几个是素数,逐个枚举是最简单的但是会超时,这里用了一个简单的函数,以后可以套用

bool isprime(int x)
{
if(x==)
return true;
if(x<||x%==)
return false;
int i=;
while(i<=sqrt(x))
{
if(x%i==)
return false;
i+=;
}
return true;
}

 AC代码:

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#define mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define ME0(x) memset(x,0,sizeof(x))
using namespace std;
bool isprime(int x)
{
if(x==)
return true;
if(x<||x%==)
return false;
int i=;
while(i<=sqrt(x))
{
if(x%i==)
return false;
i+=;
}
return true;
}
int n;
int main()
{
int total=;
int m;
cin>>n;
while(n--)
{
cin>>m;
if(isprime(m))
total++;
}
cout<<total<<endl;
}

这题比较简单,我之所以要为他写一篇博客,是因为一下这个埃拉托色筛选法:

1.列举大于等于2的整数

2.留下最小的整数2,删除所有2的倍数

3.在剩下的整数中留下最小的3,删除所有3的倍数

4.在剩下的整数中留下最小的5,删除所有5的倍数

5.以下同理,留下仍未被删除的最小的整数,删除该整数的倍数,一直循环到结束

int isprime[100005];
void eratos(int x)
{
for(int i=; i<=x; ++i)
isprime[i]=true;
isprime[]=isprime[]=false;
for(int i=; i<=x; ++i)
{
if(isprime[i])
{
int j=i+i;
while(j<=x)
{
isprime[j]=false;
j+=i;
}
}
}
}

这个是kuangbin的素数筛法,直接保存到数组,从1开始。

const int MAXN=;
int prime[MAXN+];
void getPrime()
{
memset(prime,,sizeof(prime));
for(int i=;i<=MAXN;i++)
{
if(!prime[i])prime[++prime[]]=i;
for(int j=;j<=prime[]&&prime[j]<=MAXN/i;j++)
{
prime[prime[j]*i]=;
if(i%prime[j]==)break;
}
}
}

【Aizu - ALDS1_1_C】Prime Numbers(素数筛法)的更多相关文章

  1. POJ 2739 Sum of Consecutive Prime Numbers(素数)

    POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...

  2. POJ2739_Sum of Consecutive Prime Numbers【筛法求素数】【枚举】

    Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19350 Ac ...

  3. HDOJ(HDU) 2138 How many prime numbers(素数-快速筛选没用上、)

    Problem Description Give you a lot of positive integers, just to find out how many prime numbers the ...

  4. CodeForces 385C Bear and Prime Numbers 素数打表

    第一眼看这道题目的时候觉得可能会很难也看不太懂,但是看了给出的Hint之后思路就十分清晰了 Consider the first sample. Overall, the first sample h ...

  5. UVA 10539 - Almost Prime Numbers 素数打表

    Almost prime numbers are the non-prime numbers which are divisible by only a single prime number.In ...

  6. poj 2739 Sum of Consecutive Prime Numbers 素数 读题 难度:0

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19697 ...

  7. Codeforces 385C Bear and Prime Numbers(素数预处理)

    Codeforces 385C Bear and Prime Numbers 其实不是多值得记录的一道题,通过快速打素数表,再做前缀和的预处理,使查询的复杂度变为O(1). 但是,我在统计数组中元素出 ...

  8. AOJ - 0009 Prime Number (素数筛法) && AOJ - 0005 (求最大公约数和最小公倍数)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34870 求n内的素数个数. /* ********************* ...

  9. POJ 2739 Sum of Consecutive Prime Numbers【素数打表】

    解题思路:给定一个数,判定它由几个连续的素数构成,输出这样的种数 用的筛法素数打表 Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memo ...

随机推荐

  1. wpf控件开发基础(2) -属性系统(1)

    原文:wpf控件开发基础(2) -属性系统(1) 距离上篇写的时间有1年多了.wpf太大,写的东西实在太多,我将依然围绕着自定义控件来展开与其相关的技术点. 也欢迎大家参与讨论.这篇我们将要讨论的是W ...

  2. Objective-C block实现代码分析

    block内部结构 让我们写一个block void exampleBlock() { // NSConcreteStackBlock int a = 1; __block int b = 2; in ...

  3. 特征价格(Hedonic price)

    特征价格法,又称 Hedonic 模型法和效用估价法,认为房地产由众多不同的特征组成,而房地产价格是由所有特征带给人们的效用决定的.由于各特征的数量及组合方式不同,使得房地产的价格产生差异.因此,如能 ...

  4. Why I Choose Delphi Summary

    Over the summer, there has been a number of blog posts on this topic, but I haven't seen a complete ...

  5. 新浪微博API OAuth1 Python3客户端

    #!/usr/local/bin/python3 # coding=gbk # http://www.cnblogs.com/txw1958/ # import os, io, sys, re, ti ...

  6. golang中jwt使用

    golang 中jwt使用方式总结. 1. golang示例代码 import ( "fmt" "time" "github.com/dgrijalv ...

  7. OpenGL(十八) 顶点数组和抗锯齿(反走样)设置

    顶点数组函数可以在一个数组里包含大量的与顶点相关的数据,并且可以减少函数的调用.使用顶点数组需要先启用顶点数组功能,使用glEnableClientState函数启用顶点数组,参数可以是GL_VERT ...

  8. ATS项目更新(3) 远程同步到执行机器

    1: echo %time% 2: 3: 4: rem ** ipc and mapping 5: c: 6: net use x: /del 7: net use y: /del 8: net us ...

  9. C# IDisposable接口的使用

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  10. SyncML是一平台无关的信息同步标准协议集

    SyncML (Synchronization Markup Language)是一平台无关的信息同步标准协议集.分为SyncML数据传输协议(SyncML-DS)和SyncML设备管理协议(Sync ...