思路:

$x^2+y^2=r^2$
$y=\sqrt{(r+x)(r-x)}$
令$ d=gcd(r+x,r-x)$
设A=$(r-x)/d$   $B=(r+x)/d$
则$gcd(A,B)=1$
$y^2=d^2*A*B$
∵$d、y$为完全平方数、$gcd(A,B)=1$、且$A!=B$(在坐标轴上的最后算)
∴$A、B$为完全平方数
设$a^2=(r+x)/d  b^2=(r-x)/d$
则$a^2+b^2=2r/d$
即d是2r的约数
那我们就$1到\sqrt{2r}$枚举约数
再枚举a (从$\sqrt{r/d}$枚举到$\sqrt{2r/d}$) $a^2=(r+x)/d$
$b^2=(r-x)/d=2r/d-a^2$
判断一下$gcd(a^2,b^2)$是不是等于1且$a!=b!=0$且$\sqrt{b}^2==b$
最后答案就是ans*4(四个象限)+4(坐标轴上的)

//By SiriusRen
#include <cmath>
#include <cstdio>
using namespace std;
#define int long long
int r,ans;
int gcd(int x,int y){return y?gcd(y,x%y):x;}
void solve(int d){
int lst=sqrt(*r/d),fst=sqrt(r/d);
if(fst*fst<r/d)fst++;
for(int a=fst;a<=lst;a++){
int sqrb=*r/d-a*a,b=sqrt(sqrb);
if(a&&b&&b*b==sqrb&&a!=b&&gcd(a*a,sqrb)==)ans++;
}
}
signed main(){
scanf("%lld",&r);
int sqr=sqrt(*r);
for(int d=;d<=sqr;d++)if((*r)%d==)solve(d),solve(*r/d);
printf("%lld\n",ans*+);
}

BZOJ 1041 数学的更多相关文章

  1. bzoj 1041 数学推理

    原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1041 我们只需要求第一象限内(不包括坐标轴)的点数然后ans=ans*4+4就好了 首先我 ...

  2. bzoj 5334 数学计算

    bzoj 5334 数学计算 开始想直接模拟过程做,但模数 \(M\) 不一定为质数,若没有逆元就 \(fAKe\) 掉了. 注意到操作 \(2\) 是删除对应的操作 \(1\) ,相当于只有 \(1 ...

  3. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  4. BZOJ 1041 [HAOI2008]圆上的整点:数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...

  5. BZOJ 1041 圆上的整点 数学

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1041 题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整 ...

  6. BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...

  7. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

  8. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  9. bzoj 1041 圆上的整点 分类: Brush Mode 2014-11-11 20:15 80人阅读 评论(0) 收藏

    这里先只考虑x,y都大于0的情况 如果x^2+y^2=r^2,则(r-x)(r+x)=y*y 令d=gcd(r-x,r+x),r-x=d*u^2,r+x=d*v^2,显然有gcd(u,v)=1且u&l ...

随机推荐

  1. 【sqli-labs】 less24 POST- Second Order Injections *Real treat* -Stored Injections (POST型二阶注入 *真的好玩?* 存储注入)

    简单登陆浏览一遍后,发现是一个登陆注册修改密码的应用 审查一下代码 登陆页面的username,password使用了转义 注册页面的参数也进行了转义处理 但是在修改password的页面,直接从se ...

  2. 判断input或者div.span等标签是否存在

    //用jQuery检查某个元素在网页上是否存在时,应该根据获取元素的长度来判断,代码如下 if($("#email"+i).length > 0){//判断input是否存在 ...

  3. 浅谈Json数据格式

    我们先来看下w3cschool对json的定义: JSON:JavaScript 对象表示法(JavaScript Object Notation). JSON 是存储和交换文本信息的语法.类似 XM ...

  4. 视频及MP3 播放浅析 Jplayer参数详细

    初识jplayer插件是因为它的兼容性是最好的,可以兼容到IE6,官网上对它兼容性有很详细的说明 这个是我选择使用它的首要原因. 现在从需求上来了解它的使用方法吧.第一个需求:MP3格式的音频在网页播 ...

  5. day004 与用户交互、格式化输出、基本运算符

    目录 今天Python所学习的知识如下:①与用户的交互.格式化输出.基本运算符.以下整理汇总下所学习的知识点. 与用户的交互 input 注意事项: input函数接受的都是字符串 python2中的 ...

  6. package、folder和source folder的区别

    在用myeclipse工具开发java的过程中,新建目录时发现会有package,folder和source folder等不同类型的选项, 因此在网上搜集了一些资料:如下 以下文章转自:https: ...

  7. Linux的环境配置文件----.bashrc文件

    .bashrc文件主要保存个人的一些个性化设置,如命令别名.路径等.也即在同一个服务器上,只对某个用户的个性化设置相关.它是一个隐藏文件,需要使用ls -a来查看. .bash_history   记 ...

  8. [jzoj 5770]【2018提高组模拟A组8.6】可爱精灵宝贝 (区间dp)

    传送门 Description Branimirko是一个对可爱精灵宝贝十分痴迷的玩家.最近,他闲得没事组织了一场捉精灵的游戏.游戏在一条街道上举行,街道上一侧有一排房子,从左到右房子标号由1到n. ...

  9. Vue主要原理最简实现与逻辑梳理

    Vue的主要原理中主要用到了定义的这么几个函数Dep,Watcher,observer.我们来使用这几个函数简单的实现一下vue构造函数数据绑定和相互依赖部分,梳理一下它们之间的关系.省略了编译部分和 ...

  10. redis在windows上通过cmd连接服务器(需要密码)