Covered Walkway

Time Limit: 30000/10000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 1273    Accepted Submission(s): 491

Problem Description
Your university wants to build a new walkway, and they want at least part of it to be covered. There are certain points which must be covered. It doesn’t matter if other points along the walkway are covered or not.

The building contractor has an interesting pricing scheme. To cover the walkway from a point atx to a point at
y, they will charge c+(x-y)2, wherec is a constant. Note that it is possible for
x=y. If so, then the contractor would simply chargec.


Given the points along the walkway and the constant c, what is the minimum cost to cover the walkway?
 
Input
There will be several test cases in the input. Each test case will begin with a line with two integers,n (1≤n≤1,000,000) and
c (1≤c≤109), wheren is the number of points which must be covered, and
c is the contractor’s constant. Each of the followingn lines will contain a single integer, representing a point along the walkway that must be covered. The points will be in order, from smallest to largest. All of the points
will be in the range from 1 to 109, inclusive. The input will end with a line with two 0s.
 
Output
For each test case, output a single integer, representing the minimum cost to cover all of the specified points. Output each integer on its own line, with no spaces, and do not print any blank lines between answers. All possible inputs
yield answers which will fit in a signed 64-bit integer.
 
Sample Input
10 5000
1
23
45
67
101
124
560
789
990
1019
0 0
 
Sample Output
30726
 
Source
 
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  

pid=4257">4257 4260 

pid=4261">4261 4262  

 

设f[i]表示仅仅考虑前n个的最小费用

显然f[i]=f[j-1]+c+sqr(a[i]-a[j])

若选i比选j优(i<j)

f[i-1]+sqr(a[i]-a[y])+c<f[j-1]+sqr(a[j]-a[y])+c

f[i-1]+sqr(a[i])-f[j-1]-sqr(a[j])

-----------------------------------  > 2*a[y]

a[i]-a[j]

斜率优化。


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000000+10)
#define eps 1e-13
#define Read(x) { \
while (!isdigit(c=getchar())); \
x=c-48; \
while (isdigit(c=getchar())) x=x*10+c-48; \
}
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
int n;
ll cost;
char c;
ll a[MAXN],f[MAXN];
struct P
{
int i;
long double x,y;
P(int _i,ll _x,ll _y):i(_i),x(_x),y(_y){}
P(ll _x,ll _y):x(_x),y(_y){}
P(){}
friend long double kk(P a,P b){if (abs(a.x-b.x)<eps) return (b.y-a.y)*INF;return (b.y-a.y)/(b.x-a.x); }
}st[MAXN];
struct V
{
long double x,y;
V(ll _x,ll _y):x(_x),y(_y){}
V(){}
V(P a,P b):x(b.x-a.x),y(b.y-a.y){}
friend long double operator*(V a,V b){return a.x*b.y-a.y*b.x; }
};
int main()
{
freopen("B.in","r",stdin); while (1)
{
scanf("%d%lld",&n,&cost);
if (!n) break;
For(i,n)
Read(a[i]) f[0]=0;
int head=1,tail=1;
st[1]=P(1,a[1],a[1]*a[1]);
Fork(i,1,n)
{
P A=P(i,a[i],f[i-1]+a[i]*a[i]);
while (head^tail&&V(st[tail-1],st[tail])*V(st[tail],A)<=0) tail--;
st[++tail]=A; while (head^tail&&kk(st[head],st[head+1])<2*a[i]) head++;
int k=st[head].i;
f[i]=f[k-1]+cost+(a[k]-a[i])*(a[k]-a[i]);
}
cout<<f[n]<<endl; }
return 0;
}

HDU 4258(Covered Walkway-斜率优化)的更多相关文章

  1. HDU 4258 Covered Walkway 斜率优化DP

    Covered Walkway Problem Description   Your university wants to build a new walkway, and they want at ...

  2. hdu 4258 Covered Walkway

    题目大意: 一个N个点的序列,要将他们全部覆盖,求总最少费用:费用计算: c+(x-y)2 分析: 斜率优化DP 我们假设k<j<i.如果在j的时候决策要比在k的时候决策好,那么也是就是d ...

  3. HDU 3507 单调队列 斜率优化

    斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方 ...

  4. hdu 3507 Print Article(斜率优化DP)

    题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的 ...

  5. HDU 2829 Lawrence(斜率优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  6. HDU 3507 Print Article 斜率优化

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  7. HDU 3480 Division(斜率优化+二维DP)

    Division Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others) Tota ...

  8. HDU.2829.Lawrence(DP 斜率优化)

    题目链接 \(Description\) 给定一个\(n\)个数的序列,最多将序列分为\(m+1\)段,每段的价值是这段中所有数两两相乘的和.求最小总价值. \(Solution\) 写到这突然懒得写 ...

  9. HDU 2829 [Lawrence] DP斜率优化

    解题思路 首先肯定是考虑如何快速求出一段铁路的价值. \[ \sum_{i=1}^k \sum_{j=1, j\neq i}^kA[i]A[j]=(\sum_{i=1}^kA[i])^2-\sum_{ ...

随机推荐

  1. hihocode 编程练习赛17

    1. f1 score 首先了解f1 score的计算方法, 我记得是学信息检索知道的, 然后简单处理就行. 由于我写的比较麻烦, 中间处理过程引入了一些除数为0的情况,导致错了很多次.其实是很简单的 ...

  2. Android 蓝牙开发基本流程

    此例子基于 android demo 对于一般的软件开发人员来说,蓝牙是很少用到的,尤其是Android的蓝牙开发,国内的例子很少     Android对于蓝牙开发从2.0版本的sdk才开始支持,而 ...

  3. 编译安装php、nginx

    以centos6.6为例 1.安装以及配置php 首先在官网下载源码包http://php.net/downloads.php 这里下载php-7.1.16 .tar.gzcd php-7.1.16 ...

  4. drupal 8——在CKEditor中导入video media时添加caption会导致video缩小至消失

    在CKEditor中,我点击media browser,选择video型的media,并在caption中输入video的名字.当我保存后发现在前台页面的video消失了,只留下video的名字,点击 ...

  5. Intent的调用

    //Intent  intent=new Intent();//intent.setClass(MainActivity.this, GPSService.class);//以上二条可以合并成如下一条 ...

  6. 实现PC延迟执行函数

    头文件内容: #pragma once typedef function<void ()> DelayClickHandler; typedef void (*pDelayFun)(); ...

  7. Spring的核心机制依赖注入

    原文地址:http://developer.51cto.com/art/200610/33311.htm 本文主要讲解依赖注入(设值注入.构造注入),作用是可以使Spring将各层的对象以松耦合的方式 ...

  8. N的阶乘末尾有多少个零?

    在创联ifLab的招新问答卷上看到这么一题 核心问题是: 求N!(N的阶乘)的末尾有多少个零? 由于在N特别大的时候强行算出N!是不可能的,所以肯定要另找方法解决了. 首先,为什么末尾会有0?因为2* ...

  9. 【原】Python学习_Django搭建环境及创建第一个项目

    1.Window 平台安装 Python 下载安装包    https://www.python.org/downloads/windows/ 2.Pyhton环境变量配置 右键点击"计算机 ...

  10. Python 递归、匿名函数、map和filter day4

    一.递归---函数自己调用自己 1.一个错误递归的例子: count=0 def hello(): global count count+=1 print("count %s"%c ...