Covered Walkway

Time Limit: 30000/10000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 1273    Accepted Submission(s): 491

Problem Description
Your university wants to build a new walkway, and they want at least part of it to be covered. There are certain points which must be covered. It doesn’t matter if other points along the walkway are covered or not.

The building contractor has an interesting pricing scheme. To cover the walkway from a point atx to a point at
y, they will charge c+(x-y)2, wherec is a constant. Note that it is possible for
x=y. If so, then the contractor would simply chargec.


Given the points along the walkway and the constant c, what is the minimum cost to cover the walkway?
 
Input
There will be several test cases in the input. Each test case will begin with a line with two integers,n (1≤n≤1,000,000) and
c (1≤c≤109), wheren is the number of points which must be covered, and
c is the contractor’s constant. Each of the followingn lines will contain a single integer, representing a point along the walkway that must be covered. The points will be in order, from smallest to largest. All of the points
will be in the range from 1 to 109, inclusive. The input will end with a line with two 0s.
 
Output
For each test case, output a single integer, representing the minimum cost to cover all of the specified points. Output each integer on its own line, with no spaces, and do not print any blank lines between answers. All possible inputs
yield answers which will fit in a signed 64-bit integer.
 
Sample Input
10 5000
1
23
45
67
101
124
560
789
990
1019
0 0
 
Sample Output
30726
 
Source
 
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  

pid=4257">4257 4260 

pid=4261">4261 4262  

 

设f[i]表示仅仅考虑前n个的最小费用

显然f[i]=f[j-1]+c+sqr(a[i]-a[j])

若选i比选j优(i<j)

f[i-1]+sqr(a[i]-a[y])+c<f[j-1]+sqr(a[j]-a[y])+c

f[i-1]+sqr(a[i])-f[j-1]-sqr(a[j])

-----------------------------------  > 2*a[y]

a[i]-a[j]

斜率优化。


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000000+10)
#define eps 1e-13
#define Read(x) { \
while (!isdigit(c=getchar())); \
x=c-48; \
while (isdigit(c=getchar())) x=x*10+c-48; \
}
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
int n;
ll cost;
char c;
ll a[MAXN],f[MAXN];
struct P
{
int i;
long double x,y;
P(int _i,ll _x,ll _y):i(_i),x(_x),y(_y){}
P(ll _x,ll _y):x(_x),y(_y){}
P(){}
friend long double kk(P a,P b){if (abs(a.x-b.x)<eps) return (b.y-a.y)*INF;return (b.y-a.y)/(b.x-a.x); }
}st[MAXN];
struct V
{
long double x,y;
V(ll _x,ll _y):x(_x),y(_y){}
V(){}
V(P a,P b):x(b.x-a.x),y(b.y-a.y){}
friend long double operator*(V a,V b){return a.x*b.y-a.y*b.x; }
};
int main()
{
freopen("B.in","r",stdin); while (1)
{
scanf("%d%lld",&n,&cost);
if (!n) break;
For(i,n)
Read(a[i]) f[0]=0;
int head=1,tail=1;
st[1]=P(1,a[1],a[1]*a[1]);
Fork(i,1,n)
{
P A=P(i,a[i],f[i-1]+a[i]*a[i]);
while (head^tail&&V(st[tail-1],st[tail])*V(st[tail],A)<=0) tail--;
st[++tail]=A; while (head^tail&&kk(st[head],st[head+1])<2*a[i]) head++;
int k=st[head].i;
f[i]=f[k-1]+cost+(a[k]-a[i])*(a[k]-a[i]);
}
cout<<f[n]<<endl; }
return 0;
}

HDU 4258(Covered Walkway-斜率优化)的更多相关文章

  1. HDU 4258 Covered Walkway 斜率优化DP

    Covered Walkway Problem Description   Your university wants to build a new walkway, and they want at ...

  2. hdu 4258 Covered Walkway

    题目大意: 一个N个点的序列,要将他们全部覆盖,求总最少费用:费用计算: c+(x-y)2 分析: 斜率优化DP 我们假设k<j<i.如果在j的时候决策要比在k的时候决策好,那么也是就是d ...

  3. HDU 3507 单调队列 斜率优化

    斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方 ...

  4. hdu 3507 Print Article(斜率优化DP)

    题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的 ...

  5. HDU 2829 Lawrence(斜率优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  6. HDU 3507 Print Article 斜率优化

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  7. HDU 3480 Division(斜率优化+二维DP)

    Division Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others) Tota ...

  8. HDU.2829.Lawrence(DP 斜率优化)

    题目链接 \(Description\) 给定一个\(n\)个数的序列,最多将序列分为\(m+1\)段,每段的价值是这段中所有数两两相乘的和.求最小总价值. \(Solution\) 写到这突然懒得写 ...

  9. HDU 2829 [Lawrence] DP斜率优化

    解题思路 首先肯定是考虑如何快速求出一段铁路的价值. \[ \sum_{i=1}^k \sum_{j=1, j\neq i}^kA[i]A[j]=(\sum_{i=1}^kA[i])^2-\sum_{ ...

随机推荐

  1. JS连续滚动幻灯片:原理与实现

    什么是连续滚动幻灯片?打开一些网站的首页,你会发现有一块这样的区域:一张图片,隔一段时间滑动切换下一张:同时,图片两端各有一个小按钮,供你手动点选下一张:底部有一排小圆圈,供你选定特定的某帧图片.这就 ...

  2. [Swift通天遁地]四、网络和线程-(5)解析网络请求数据:String(字符串)、Data(二进制数据)和JSON数据

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  3. OpenResty / Nginx模块,Lua库和相关资源的列表

    OpenResty / Nginx模块,Lua库和相关资源的列表 什么是OpenResty OpenResty是一个成熟的网络平台,它集成了标准的Nginx核心,LuaJIT,许多精心编写的Lua库, ...

  4. 数据库部署到linux服务器,供本地访问。

    1.  将本地的sql文件上传至服务器 scp /Users/fangke/Documents/article.sql root@IP:/usr/local 2. 登陆服务器的mysql 3. 创建数 ...

  5. Codeforces 792C

    题意:给出一个由0到9数字构成的字符串,要求删去最少的数位,使得这个字符串代表的数能被3整除,同时要求不能有前导零,并且至少有一位(比如数字11,删去两个1后就没有数位了,所以不符合).如果能够处理出 ...

  6. 题解报告:hdu 1575 Tr A

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...

  7. 【Leetcode 3】Longest Substring Without Repeating Characters0

    Description: Given a string, find the length of the longest substring without repeating characters. ...

  8. 【转】Linux GCC常用命令

    转自:http://www.cnblogs.com/ggjucheng/archive/2011/12/14/2287738.html 1简介 2简单编译 2.1预处理 2.2编译为汇编代码(Comp ...

  9. RabbitMQ~说说Exchange的几种模式

    RabbitMQ里的Exchange提供了四种模式,或者叫它类型,它们是fanout,direct,topic和header,其中前三种模式我们用的比较多,所有我们主要介绍前3种! Direct 任何 ...

  10. String字符串的完美度

    题目详情: 我们要给每个字母配一个1-26之间的整数,具体怎么分配由你决定,但不同字母的完美度不同, 而一个字符串的完美度等于它里面所有字母的完美度之和,且不在乎字母大小写,也就是说字母F和f的完美度 ...