GYM 100741A Queries(树状数组)
A. Queries
0.25 seconds
64 megabytes
standard input
standard output
Mathematicians are interesting (sometimes, I would say, even crazy) people. For example, my friend, a mathematician, thinks that it is very fun to play with a sequence of integer numbers. He writes the sequence in a row. If he wants he increases one number of the sequence, sometimes it is more interesting to decrease it (do you know why?..) And he likes to add the numbers in the interval [l;r]. But showing that he is really cool he adds only numbers which are equal some mod (modulo m).
Guess what he asked me, when he knew that I am a programmer? Yep, indeed, he asked me to write a program which could process these queries (n is the length of the sequence):
- + p r It increases the number with index p by r. (
,
)
You have to output the number after the increase.
- - p r It decreases the number with index p by r. (
,
) You must not decrease the number if it would become negative.
You have to output the number after the decrease.
- s l r mod You have to output the sum of numbers in the interval
which are equal mod (modulo m). (
) (
)
The first line of each test case contains the number of elements of the sequence n and the number m. (1 ≤ n ≤ 10000) (1 ≤ m ≤ 10)
The second line contains n initial numbers of the sequence. (0 ≤ number ≤ 1000000000)
The third line of each test case contains the number of queries q (1 ≤ q ≤ 10000).
The following q lines contains the queries (one query per line).
Output q lines - the answers to the queries.
3 4
1 2 3
3
s 1 3 2
+ 2 1
- 1 2
2
3
1 题意:
1个长度为n 的序列,q 次三种操作:
+ p r: 下标为p 的数加r.
- p r: 下表为p 的数减r.
s l r mod: 询问在模m(提前给出) 意义下[l,r] 之中有多少个数等于mod.
/*
10个树状数组 分别记录mod m为几的数个数
加减号做 询问时输出模数所在树状数组l~r个数即可
*/
#include<bits/stdc++.h> #define N 10010
#define ll long long using namespace std; struct BIT
{
ll c[N];
int n; int lowbit(int x){return x&(-x);} void modify(int x,ll y){for(; x<=n; x+=lowbit(x)) c[x]+=y;} ll query(int x)
{
ll ret=;
for(; x; x-=lowbit(x)) ret+=c[x];
return ret;
} ll query(int l,int r){return query(r)-query(l-);}
} bit[]; int n,m,T;
ll a[N]; int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<m;i++) bit[i].n=n;
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i]);
bit[a[i]%m].modify(i,a[i]);
}
scanf("%d",&T);
while(T--)
{
int x,y,z;
char opt[];
scanf("%s%d%d",opt,&x,&y);
if(opt[]=='+')
{
bit[a[x]%m].modify(x,-a[x]);
a[x]+=y;
bit[a[x]%m].modify(x,a[x]);
printf("%lld\n",a[x]);
}
if(opt[]=='-')
{
if(a[x]<y) printf("%lld\n",a[x]);
else
{
bit[a[x]%m].modify(x,-a[x]);
a[x]-=y;
bit[a[x]%m].modify(x,a[x]);
printf("%lld\n",a[x]);
}
}
if(opt[]=='s')
{
scanf("%d",&z);
printf("%lld\n",bit[z].query(x,y));
}
}
return ;
}
GYM 100741A Queries(树状数组)的更多相关文章
- Codeforces 369E Valera and Queries --树状数组+离线操作
题意:给一些线段,然后给m个查询,每次查询都给出一些点,问有多少条线段包含这个点集中的一个或多个点 解法:直接离线以点为基准和以线段为基准都不好处理,“正难则反”,我们试着求有多少线段是不包含某个查询 ...
- Gym - 101755G Underpalindromity (树状数组)
Let us call underpalindromity of array b of length k the minimal number of times one need to increme ...
- CF Gym 100463A (树状数组求逆序数)
题意:给你一个序列,和标准序列连线,求交点数. 题解:就是求逆序对个数,用树状数组优化就行了.具体过程就是按照顺序往树状数组了插点(根据点的大小),因为第i大的点应该排在第i位,插进去的时候他前面本该 ...
- Codeforces Round #216 (Div. 2) E. Valera and Queries 树状数组 离线处理
题意:n个线段[Li, Ri], m次询问, 每次询问由cnt个点组成,输出包含cnt个点中任意一个点的线段的总数. 由于是无修改的,所以我们首先应该往离线上想, 不过我是没想出来. 首先反着做,先求 ...
- GYM 101889F(树状数组)
bit扫描坐标套路题,注意有重复的点,莽WA了. const int maxn = 1e5 + 5; struct node { ll B, F, D; bool operator < (con ...
- gym 100589A queries on the Tree 树状数组 + 分块
题目传送门 题目大意: 给定一颗根节点为1的树,有两种操作,第一种操作是将与根节点距离为L的节点权值全部加上val,第二个操作是查询以x为根节点的子树的权重. 思路: 思考后发现,以dfs序建立树状数 ...
- Codeforces Gym 100114 H. Milestones 离线树状数组
H. Milestones Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descripti ...
- Gym 101908C - Pizza Cutter - [树状数组]
题目链接:https://codeforces.com/gym/101908/problem/C 题意: 一块正方形披萨,有 $H$ 刀是横切的,$V$ 刀是竖切的,不存在大于等于三条直线交于一点.求 ...
- Codeforces Gym 100269F Flight Boarding Optimization 树状数组维护dp
Flight Boarding Optimization 题目连接: http://codeforces.com/gym/100269/attachments Description Peter is ...
随机推荐
- CorelDRAW快速制作抖音幻影图像效果
本教程讲解非常受欢迎的幻影图像效果(Anaglyph 3d),也叫图像分色立体效果,这其中我们要用到CorelDRAW中的透明度工具. 在开始实施Anaglyph效应之前,应当知道,Anaglyph ...
- Java切换JDK版本的方法及技巧
由于项目的不同安排,之前项目开发时,使用的jdk版本为1.8,现临时接手一以前项目,需要更换jdk版本. 安装 不再赘述,去Oracle网站(https://www.oracle.com/techne ...
- CAD插入非等比例的图块
主要用到函数说明: _DMxDrawX::InsertBlock 向控件数据库中插入一个图块,不用它插入匿名块.详细说明如下: 参数 说明 BSTR pszDwgFileName 图块定义的dwg 文 ...
- Java中“==”、“compareTo()”和“equals()”的区别
在比较两个对象或者数据大小的时候,经常会用到==.compareTo()和equals(),尤其是在接入了Comparable接口后重写compareTo方法等场景,所以我们来理一下这三个的区别. 1 ...
- tp定时任务,传参问题
<?phpnamespace app\command; use think\console\Command;use think\console\Input;use think\console\i ...
- Idea 创建maven web项目(手工创建)
参考链接:https://www.cnblogs.com/justuntil/p/7511787.html 话不多说,直接上图: 1.创建maven项目 创建项目完成,项目结构如下: 2.项目部署配置 ...
- Burnside引理和polay计数 poj2409 Let it Bead
题目描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ...
- Problem 63
Problem 63 https://projecteuler.net/problem=63 Powerful digit counts The 5-digit number, 16807=75, i ...
- Android学习总结(5)——9个非常有用的Andorid 程序片段
一,获取系统版本号: PackageInfo info = this.getPackageManager().getPackageInfo(this.getPackageName(), 0); int ...
- [bzoj1598][Usaco08Mar]牛跑步_A*_Dijkstra
牛跑步 bzoj-1598 题目大意:给你n个点,m条边的有向图.求从1到n的严格的第k短路. 注释:$1\le n\le 1000$,$1\le m \le 10,000$,$1\le k \le ...