友情提示

  1. 本文档根据林大贵的《Python+Spark 2.0 + Hadoop机器学习与大数据实战》整理得到,代码均为书中提供的源码(python 2.X版本)。
  2. 本文的可以利用pandoc转换为docx文档,点击这里安装下载pandoc后,在终端输入以下命令:

pandoc youfilename.md -f markdown -t docx -s -o outputfilename.docx

Mllib

决策树二元分类

环境准备

这个阶段包括数据的下载和整理,去除缺失的数据,不符合规范的数据(比如乱码等),数据类型转换,将字符串类型映射为数字类型(建立字典),数据类型转患(将字符串类型的数字转换为浮点型的数字)。

  • 导入这个模型我们需要的包
# -*- coding: UTF-8 -*-
import sys
from time import time
import pandas as pd
import matplotlib.pyplot as plt
from pyspark import SparkConf, SparkContext
from pyspark.mllib.tree import DecisionTree
from pyspark.mllib.regression import LabeledPoint
import numpy as np
from pyspark.mllib.evaluation import BinaryClassificationMetrics
  • 创建SparkContext,并设置日志级别
def SetLogger( sc ):
logger = sc._jvm.org.apache.log4j
logger.LogManager.getLogger("org"). setLevel( logger.Level.ERROR )
logger.LogManager.getLogger("akka").setLevel( logger.Level.ERROR )
logger.LogManager.getRootLogger().setLevel(logger.Level.ERROR) #如果要在cluster模式运行(hadoop yarn 或Spark Stand alone),请按照书上的说明,先把文件上传到HDFS目录
def SetPath(sc):
global Path
if sc.master[0:5]=="local" :
Path="file:/mnt/hdfs/Hadoop/"
else:
Path="hdfs://master:9000/user/hduser/" def CreateSparkContext():
sparkConf = SparkConf().\
setAppName("RunDecisionTreeBinary").\
set("spark.ui.showConsoleProgress", "false")
sc = SparkContext(conf = sparkConf)
print ("master="+sc.master)
SetLogger(sc)
SetPath(sc)
return (sc)

数据准备

def convert_float(x):
return (0 if x=="?" else float(x)) def extract_label(record):
label=(record[-1])
return float(label) def extract_features(field,categoriesMap,featureEnd):
categoryIdx = categoriesMap[field[3]]
categoryFeatures = np.zeros(len(categoriesMap))
categoryFeatures[categoryIdx] = 1
numericalFeatures=[convert_float(field) for field in field[4: featureEnd]]
return np.concatenate(( categoryFeatures, numericalFeatures)) def extract_label(record):
label=(record[-1])
return float(label) def extract_features(field,categoriesMap,featureEnd):
categoryIdx = categoriesMap[field[3]]
categoryFeatures = np.zeros(len(categoriesMap))
categoryFeatures[categoryIdx] = 1
numericalFeatures=[convert_float(field) for field in field[4: featureEnd]]
return np.concatenate(( categoryFeatures, numericalFeatures)) def PrepareData(sc):
#----------------------1.导入并转换数据-------------
print("开始导入数据...")
rawDataWithHeader = sc.textFile(Path+"Data/train.tsv")
header = rawDataWithHeader.first()
rawData = rawDataWithHeader.filter(lambda x:x !=header)
rData=rawData.map(lambda x: x.replace("\"", ""))
lines = rData.map(lambda x: x.split("\t"))
print("共计:" + str(lines.count()) + "项")
#----------------------2.建立训练评估所需数据 RDD[LabeledPoint]-------------
categoriesMap = lines.map(lambda fields: fields[3]). \
distinct().zipWithIndex().collectAsMap()
# 提取特征字段和标签
labelpointRDD = lines.map( lambda r:LabeledPoint( \
extract_label(r), \
extract_features(r,categoriesMap,len(r) - 1)))
#print "labelpointRDD=",labelpointRDD.first(),"\n" #----------------------3.以随机方式将数据分为3个部分并且返回-------------
(trainData, validationData, testData) = labelpointRDD.randomSplit([8, 1, 1])
print("将数据分trainData:" + str(trainData.count()) +
" validationData:" + str(validationData.count()) +
" testData:" + str(testData.count()))
return (trainData, validationData, testData, categoriesMap) #返回数据

模型训练

  • 建立trainData,使用trainData执行DecisionTree训练并建立模型
from pyspark.mllib.tree import DecisionTree
model = DecisionTree.trainClassifier(trainData,numClasses=2,categoricalFeaturesInfo={},\
impurity='entropy',maxDepth=5,maxBins=5)
  • 使用 DecisionTree.trainClassifier(trainData,validationData,impurityParm, maxDepthParm, maxBinsParm)模型训练
def evaluateModel(model, validationData):
score = model.predict(validationData.map(lambda p: p.features))
scoreAndLabels=score.zip(validationData.map(lambda p: p.label))
metrics = BinaryClassificationMetrics(scoreAndLabels)
AUC=metrics.areaUnderROC
return( AUC) def trainEvaluateModel(trainData,validationData,
impurityParm, maxDepthParm, maxBinsParm):
startTime = time()
model = DecisionTree.trainClassifier(trainData,
numClasses=2, categoricalFeaturesInfo={}, #这里是二元分类所以numClasses设置为2
impurity=impurityParm,
maxDepth=maxDepthParm,
maxBins=maxBinsParm) AUC = evaluateModel(model, validationData)
duration = time() - startTime
print("训练评估:使用参数" + \
" impurity="+str(impurityParm) +\
" maxDepth="+str(maxDepthParm) + \
" maxBins="+str(maxBinsParm) +\
" 所需时间="+str(duration) + \
" 结果AUC = " + str(AUC) )
return (AUC,duration, impurityParm, maxDepthParm, maxBinsParm,model)

模型预测

  • PredictData(sc,model,categoriesMap)
def PredictData(sc,model,categoriesMap):
print("开始导入数据...")
rawDataWithHeader = sc.textFile(Path+"Data/test.tsv")
header = rawDataWithHeader.first()
rawData = rawDataWithHeader.filter(lambda x:x !=header)
rData=rawData.map(lambda x: x.replace("\"", ""))
lines = rData.map(lambda x: x.split("\t"))
print("共计:" + str(lines.count()) + "项")
dataRDD = lines.map(lambda r: ( r[0] ,
extract_features(r,categoriesMap,len(r) )))
DescDict = {
0: "暂时性网页(ephemeral)",
1: "长青网页(evergreen)"
}
for data in dataRDD.take(10):
predictResult = model.predict(data[1])
print( " 网址: " +str(data[0])+"\n" +\
" ==>预测:"+ str(predictResult)+ \
" 说明:"+DescDict[predictResult] +"\n")

模型评估

  • 创建scoreAndLabels
score = model.predict(validationData.map(lambda p:p.features))
scoreAndLabels = score.zip(validationData.map(lambda p:p.label))
scoreAndLabels.take(5)
  • 编写BinaryClassifierMetrix计算AUC
from pyspark.mllib.evaluation import BinaryClassificationMetrics
metrics = BinaryClassificationMetrics(scoreAndLabels)
print('AUC= ' + str(metrics.areaUnderROC))
  • 使用BinaryClassificationMetrics(scoreAndLables).areaUnderROC进行评估分析,计算AUC。
def evaluateModel(model, validationData):
score = model.predict(validationData.map(lambda p: p.features))
scoreAndLabels=score.zip(validationData.map(lambda p: p.label))
metrics = BinaryClassificationMetrics(scoreAndLabels)
AUC=metrics.areaUnderROC
return AUC

参数评估

  • 评估impurity参数,决策树分裂结点的方法
impurityList = ['gini','entropy']
maxDepthList=[10]
maxBinList=[10] metrics = [trainEvaluateModel(trainData,validationData,impurity,maxDepth,maxBins) \
for impurity in impurityList \
for maxDepth in maxDepthList \
for maxBins in maxBinList]
  • 编写 evalParameter 评估单个参数
def evalParameter(trainData, validationData, evalparm,
impurityList, maxDepthList, maxBinsList): metrics = [trainEvaluateModel(trainData, validationData,
impurity,maxDepth, maxBins )
for impurity in impurityList
for maxDepth in maxDepthList
for maxBins in maxBinsList ] if evalparm=="impurity":
IndexList=impurityList[:]
elif evalparm=="maxDepth":
IndexList=maxDepthList[:]
elif evalparm=="maxBins":
IndexList=maxBinsList[:] df = pd.DataFrame(metrics,index=IndexList,
columns=['AUC', 'duration','impurity', 'maxDepth', 'maxBins','model'])
showchart(df,evalparm,'AUC','duration',0.5,0.7 ) evalParameter(trainData,validationData,'maxDepth',impurityList=['gini'],maxDepthList=[3,5,10,15,25,],maxBinList=[10])
  • 可视化,编写showchart() 函数
def showchart(df,evalparm ,barData,lineData,yMin,yMax):
ax = df[barData].plot(kind='bar', title =evalparm,figsize=(10,6),legend=True, fontsize=12)
ax.set_xlabel(evalparm,fontsize=12)
ax.set_ylim([yMin,yMax])
ax.set_ylabel(barData,fontsize=12)
ax2 = ax.twinx()
ax2.plot(df[[lineData ]].values, linestyle='-', marker='o', linewidth=2.0,color='r')
plt.show()
  • 找出准确率最高的参数组合,编写evalAllParameter() 函数,包括impuritymaxDepthmaxBins
def evalAllParameter(trainData, validationData,
impurityList, maxDepthList, maxBinsList):
metrics = [trainEvaluateModel(trainData, validationData,
impurity,maxDepth, maxBins )
for impurity in impurityList
for maxDepth in maxDepthList
for maxBins in maxBinsList ] Smetrics = sorted(metrics, key=lambda k: k[0], reverse=True)
bestParameter=Smetrics[0] print("调校后最佳参数:impurity:" + str(bestParameter[2]) +
" ,maxDepth:" + str(bestParameter[3]) +
" ,maxBins:" + str(bestParameter[4]) +
" ,结果AUC = " + str(bestParameter[0])) return bestParameter[5] # 这里的bestParameter[5]指的是返回的带有最佳参数的最佳模型

检验AUC

  • 检测模型是否过度训练,看一下testData的AUC是否过低。
AUC = evaluateModel(model,testData)
print("AUC = " + str(AUC))

驱动函数

if __name__ == "__main__":
print("RunDecisionTreeBinary")
sc=CreateSparkContext()
print("==========数据准备阶段===============")
(trainData, validationData, testData, categoriesMap) =PrepareData(sc)
trainData.persist(); validationData.persist(); testData.persist()
print("==========训练评估阶段===============")
(AUC,duration, impurityParm, maxDepthParm, maxBinsParm,model)= \
trainEvaluateModel(trainData, validationData, "entropy", 10, 200) if (len(sys.argv) == 2) and (sys.argv[1]=="-e"):
parametersEval(trainData, validationData)
elif (len(sys.argv) == 2) and (sys.argv[1]=="-a"):
print("-----所有参数训练评估找出最好的参数组合---------")
model=evalAllParameter(trainData, validationData,
["gini", "entropy"],
[3, 5, 10, 15, 20, 25],
[3, 5, 10, 50, 100, 200 ])
print("==========测试阶段===============")
auc = evaluateModel(model, testData)
print("使用test Data测试最佳模型,结果 AUC:" + str(auc))
print("==========预测数据===============")
PredictData(sc, model, categoriesMap)
print(model.toDebugString())

逻辑回归二元分类

环境准备

  • 导入这个模型需要的包
# -*- coding: UTF-8 -*-
import sys
from time import time
import pandas as pd
import matplotlib.pyplot as plt
from pyspark import SparkConf, SparkContext
from pyspark.mllib.classification import LogisticRegressionWithSGD
from pyspark.mllib.regression import LabeledPoint
import numpy as np
from pyspark.mllib.evaluation import BinaryClassificationMetrics
from pyspark.mllib.feature import StandardScaler
  • 前期准备
def SetLogger( sc ):
logger = sc._jvm.org.apache.log4j
logger.LogManager.getLogger("org"). setLevel( logger.Level.ERROR )
logger.LogManager.getLogger("akka").setLevel( logger.Level.ERROR )
logger.LogManager.getRootLogger().setLevel(logger.Level.ERROR) def SetPath(sc):
global Path
if sc.master[0:5]=="local" :
Path="file:/home/hduser/pythonsparkexample/PythonProject/"
else:
Path="hdfs://master:9000/user/hduser/" def CreateSparkContext():
sparkConf = SparkConf() \
.setAppName("LogisticRegressionWithSGD") \
.set("spark.ui.showConsoleProgress", "false")
sc = SparkContext(conf = sparkConf)
print ("master="+sc.master)
SetLogger(sc)
SetPath(sc)
return (sc)

数据准备

  • 标准化将数值特征字段具有共同的标准
def extract_label(record):
label=(record[-1])
return float(label) def extract_features(field,categoriesMap,featureEnd):
categoryIdx = categoriesMap[field[3]]
categoryFeatures = np.zeros(len(categoriesMap))
categoryFeatures[categoryIdx] = 1
numericalFeatures=[convert_float(field) for field in field[4: featureEnd]]
return np.concatenate(( categoryFeatures, numericalFeatures)) def convert_float(x):
return (0 if x=="?" else float(x)) def PrepareData(sc):
#----------------------1.导入并转换数据-------------
print("开始导入数据...")
rawDataWithHeader = sc.textFile(Path+"data/train.tsv")
header = rawDataWithHeader.first()
rawData = rawDataWithHeader.filter(lambda x:x !=header)
rData=rawData.map(lambda x: x.replace("\"", ""))
lines = rData.map(lambda x: x.split("\t"))
print("共计:" + str(lines.count()) + "项")
#----------------------2.建立训练评估所需数据 RDD[LabeledPoint]-------------
print "标准化之前:",
categoriesMap = lines.map(lambda fields: fields[3]). \
distinct().zipWithIndex().collectAsMap()
labelRDD = lines.map(lambda r: extract_label(r))
featureRDD = lines.map(lambda r: extract_features(r,categoriesMap,len(r) - 1))
for i in featureRDD.first():
print (str(i)+","),
print ("")
print ("标准化之后:")
#这里的withMean参数为True,在朴素贝叶斯的模型立这个参数应当设置为False
stdScaler = StandardScaler(withMean=True, withStd=True).fit(featureRDD)
ScalerFeatureRDD=stdScaler.transform(featureRDD)
for i in ScalerFeatureRDD.first():
print (str(i)+","),
labelpoint=labelRDD.zip(ScalerFeatureRDD)
labelpointRDD=labelpoint.map(lambda r: LabeledPoint(r[0], r[1]))
#----------------------3.以随机方式将数据分为3个部分并且返回-------------
(trainData, validationData, testData) = labelpointRDD.randomSplit([8, 1, 1])
print("将数据分trainData:" + str(trainData.count()) +
" validationData:" + str(validationData.count()) +
" testData:" + str(testData.count()))
return (trainData, validationData, testData, categoriesMap) #返回数据

模型训练

  • 使用LogisticRegressionWithSGD.train(trainData, numIterations, stepSize, miniBatchFraction)进行模型训练

numIterations:使用SGD迭代的次数

stepSize:每次执行SGD迭代步长大小,默认为1

minBatchFraction:每次迭代参与计算的样本比例,数值在0 - 1之间,默认为1

def evaluateModel(model, validationData):
score = model.predict(validationData.map(lambda p: p.features))
scoreAndLabels=score.zip(validationData \
.map(lambda p: p.label)) \
.map(lambda (x,y): (float(x),float(y)) )
metrics = BinaryClassificationMetrics(scoreAndLabels)
AUC=metrics.areaUnderROC
return( AUC) def trainEvaluateModel(trainData,validationData,
numIterations, stepSize, miniBatchFraction):
startTime = time()
model = LogisticRegressionWithSGD.train(trainData,
numIterations, stepSize, miniBatchFraction)
AUC = evaluateModel(model, validationData)
duration = time() - startTime
print "训练评估:使用参数" + \
" numIterations="+str(numIterations) +\
" stepSize="+str(stepSize) + \
" miniBatchFraction="+str(miniBatchFraction) +\
" 所需时间="+str(duration) + \
" 结果AUC = " + str(AUC)
return (AUC,duration, numIterations, stepSize, miniBatchFraction,model)

模型预测

  • 使用test.tsv进行预测
def PredictData(sc,model,categoriesMap):
print("开始导入数据...")
rawDataWithHeader = sc.textFile(Path+"data/test.tsv")
header = rawDataWithHeader.first()
rawData = rawDataWithHeader.filter(lambda x:x !=header)
rData=rawData.map(lambda x: x.replace("\"", ""))
lines = rData.map(lambda x: x.split("\t"))
print("共计:" + str(lines.count()) + "项")
dataRDD = lines.map(lambda r: ( r[0] ,
extract_features(r,categoriesMap,len(r) )))
DescDict = {
0: "暂时性网页(ephemeral)",
1: "长青网页(evergreen)"
}
for data in dataRDD.take(10):
predictResult = model.predict(data[1])
print " 网址: " +str(data[0])+"\n" +\
" ==>预测:"+ str(predictResult)+ \
" 说明:"+DescDict[predictResult] +"\n"

模型评估

  • 使用BinaryClassificationMetrics(scoreAndLables)进行评估分析,计算AUC,标准化后的模型都需要浮点类型的转换
def evaluateModel(model, validationData):
score = model.predict(validationData.map(lambda p: p.features))
scoreAndLabels=score.zip(validationData.map(lambda p: p.label)).map(lambda (x,y):(float(x),float(y)) )
metrics = BinaryClassificationMetrics(scoreAndLabels)
AUC=metrics.areaUnderROC
return( AUC)

参数评估

  • 可视化函数
def showchart(df,evalparm ,barData,lineData,yMin,yMax):
ax = df[barData].plot(kind='bar', title =evalparm,figsize=(10,6),legend=True, fontsize=12)
ax.set_xlabel(evalparm,fontsize=12)
ax.set_ylim([yMin,yMax])
ax.set_ylabel(barData,fontsize=12)
ax2 = ax.twinx()
ax2.plot(df[[lineData ]].values, linestyle='-', marker='o', linewidth=2.0,color='r')
plt.show()
  • 单个参数评估
def evalParameter(trainData, validationData, evalparm,
numIterationsList, stepSizeList, miniBatchFractionList): metrics = [trainEvaluateModel(trainData, validationData,
numIterations,stepSize, miniBatchFraction )
for numIterations in numIterationsList
for stepSize in stepSizeList
for miniBatchFraction in miniBatchFractionList ] if evalparm=="numIterations":
IndexList=numIterationsList[:]
elif evalparm=="stepSize":
IndexList=stepSizeList[:]
elif evalparm=="miniBatchFraction":
IndexList=miniBatchFractionList[:] df = pd.DataFrame(metrics,index=IndexList,
columns=['AUC', 'duration','numIterations', 'stepSize','miniBatchFraction','model']) showchart(df,evalparm,'AUC','duration',0.5,0.7 )
  • 多个参数评估
def  parametersEval(trainData, validationData):
print("----- 评估numIterations参数使用 ---------")
evalParameter(trainData, validationData,"numIterations",
numIterationsList=[5, 15, 20, 60, 100],
stepSizeList=[10],
miniBatchFractionList=[1 ])
print("----- 评估stepSize参数使用 ---------")
evalParameter(trainData, validationData,"stepSize",
numIterationsList=[100],
stepSizeList=[10, 50, 100, 200],
miniBatchFractionList=[1])
print("----- 评估miniBatchFraction参数使用 ---------")
evalParameter(trainData, validationData,"miniBatchFraction",
numIterationsList=[100],
stepSizeList =[100],
miniBatchFractionList=[0.5, 0.8, 1 ])
  • 多个参数同时评估,包括numIterationsstepSizeminBatchFraction

numIterations:使用SGD迭代的次数

stepSize:每次执行SGD迭代步长大小,默认为1

minBatchFraction:每次迭代参与计算的样本比例,数值在0 - 1之间,默认为1

def evalAllParameter(trainData, validationData,
numIterationsList, stepSizeList, miniBatchFractionList):
metrics = [trainEvaluateModel(trainData, validationData,
numIterations,stepSize, miniBatchFraction )
for numIterations in numIterationsList
for stepSize in stepSizeList
for miniBatchFraction in miniBatchFractionList ] Smetrics = sorted(metrics, key=lambda k: k[0], reverse=True)
bestParameter=Smetrics[0] print("调校后最佳参数:numIterations:" + str(bestParameter[2]) +
" ,stepSize:" + str(bestParameter[3]) +
" ,miniBatchFraction:" + str(bestParameter[4]) +
" ,结果AUC = " + str(bestParameter[0])) return bestParameter[5] # 这里的bestParameter[5]指的是返回的带有最佳参数的最佳模型

检验AUC

AUC = evaluateModel(model,testData)
print("AUC = " + str(AUC))

驱动函数

if __name__ == "__main__":
print("RunLogisticRegressionWithSGDBinary")
sc=CreateSparkContext()
print("==========数据准备阶段===============")
(trainData, validationData, testData, categoriesMap) =PrepareData(sc)
trainData.persist(); validationData.persist(); testData.persist()
print("==========训练评估阶段===============")
(AUC,duration, numIterationsParm, stepSizeParm, miniBatchFractionParm,model)= \
trainEvaluateModel(trainData, validationData, 15, 10, 0.5)
if (len(sys.argv) == 2) and (sys.argv[1]=="-e"):
parametersEval(trainData, validationData)
elif (len(sys.argv) == 2) and (sys.argv[1]=="-a"):
print("-----所有参数训练评估找出最好的参数组合---------")
model=evalAllParameter(trainData, validationData,
[3, 5, 10,15],
[10, 50, 100],
[0.5, 0.8, 1 ])
print("==========测试阶段===============")
auc = evaluateModel(model, testData)
print("使用test Data测试最佳模型,结果 AUC:" + str(auc))
print("==========预测数据===============")
PredictData(sc, model, categoriesMap)

支持向量机SVM二元分类

环境准备

  • 导入SVMWithSGDStandardScale模块
# -*- coding: UTF-8 -*-
import sys
from time import time
import pandas as pd
import matplotlib.pyplot as plt
from pyspark import SparkConf, SparkContext
from pyspark.mllib.classification import SVMWithSGD
from pyspark.mllib.regression import LabeledPoint
import numpy as np
from pyspark.mllib.evaluation import BinaryClassificationMetrics
from pyspark.mllib.feature import StandardScale
def SetLogger( sc ):
logger = sc._jvm.org.apache.log4j
logger.LogManager.getLogger("org"). setLevel( logger.Level.ERROR )
logger.LogManager.getLogger("akka").setLevel( logger.Level.ERROR )
logger.LogManager.getRootLogger().setLevel(logger.Level.ERROR) def SetPath(sc):
global Path
if sc.master[0:5]=="local" :
Path="file:/home/hduser/pythonsparkexample/PythonProject/"
else:
Path="hdfs://master:9000/user/hduser/"
def CreateSparkContext():
sparkConf = SparkConf() \
.setAppName("LogisticRegressionWithSGD") \
.set("spark.ui.showConsoleProgress", "false")
sc = SparkContext(conf = sparkConf)
print ("master="+sc.master)
SetLogger(sc)
SetPath(sc)
return (sc)

数据准备

def extract_label(record):
label=(record[-1])
return float(label) def extract_features(field,categoriesMap,featureEnd):
categoryIdx = categoriesMap[field[3]]
categoryFeatures = np.zeros(len(categoriesMap))
categoryFeatures[categoryIdx] = 1
numericalFeatures=[convert_float(field) for field in field[4: featureEnd]]
return np.concatenate(( categoryFeatures, numericalFeatures)) def convert_float(x):
return (0 if x=="?" else float(x)) def PrepareData(sc):
#----------------------1.导入并转换数据-------------
print("开始导入数据...")
rawDataWithHeader = sc.textFile(Path+"data/train.tsv")
header = rawDataWithHeader.first()
rawData = rawDataWithHeader.filter(lambda x:x !=header)
rData=rawData.map(lambda x: x.replace("\"", ""))
lines = rData.map(lambda x: x.split("\t"))
print("共计:" + str(lines.count()) + "项")
#----------------------2.建立训练评估所需数据 RDD[LabeledPoint]-------------
print "标准化之前:",
categoriesMap = lines.map(lambda fields: fields[3]). \
distinct().zipWithIndex().collectAsMap()
labelRDD = lines.map(lambda r: extract_label(r))
featureRDD = lines.map(lambda r: extract_features(r,categoriesMap,len(r) - 1)) for i in featureRDD.first():
print (str(i)+","),
print "" stdScaler = StandardScaler(withMean=True, withStd=True).fit(featureRDD)
ScalerFeatureRDD=stdScaler.transform(featureRDD)
print "标准化之后:",
for i in ScalerFeatureRDD.first():
print (str(i)+","),
labelpoint=labelRDD.zip(ScalerFeatureRDD)
labelpointRDD=labelpoint.map(lambda r: LabeledPoint(r[0], r[1])) #----------------------3.以随机方式将数据分为3个部分并且返回-------------
(trainData, validationData, testData) = labelpointRDD.randomSplit([8, 1, 1])
print("将数据分trainData:" + str(trainData.count()) +
" validationData:" + str(validationData.count()) +
" testData:" + str(testData.count()))
return (trainData, validationData, testData, categoriesMap) #返回数据

模型训练

  • 使用SVMWithSGD.train(trainData, numIterations, stepSize, regParam)进行模型训练

trainData:输入的训练数据LabeledPointRDD

numIterations:使用SGD迭代的次数,默认为100

stepSize:每次执行SGD迭代步长的大小,默认为1

regParam:正则化参数,数值为 0-1 之间

def trainEvaluateModel(trainData,validationData,
numIterations, stepSize, regParam):
startTime = time()
model = SVMWithSGD.train(trainData, numIterations, stepSize, regParam)
AUC = evaluateModel(model, validationData)
duration = time() - startTime
print "训练评估:使用参数" + \
" numIterations="+str(numIterations) +\
" stepSize="+str(stepSize) + \
" regParam="+str(regParam) +\
" 所需时间="+str(duration) + \
" 结果AUC = " + str(AUC)
return (AUC,duration, numIterations, stepSize, regParam,model)

模型预测

  • 利用 model.predict() 进行预测
def PredictData(sc,model,categoriesMap):
print("开始导入数据...")
rawDataWithHeader = sc.textFile(Path+"data/test.tsv")
header = rawDataWithHeader.first()
rawData = rawDataWithHeader.filter(lambda x:x !=header)
rData=rawData.map(lambda x: x.replace("\"", ""))
lines = rData.map(lambda x: x.split("\t"))
print("共计:" + str(lines.count()) + "项")
dataRDD = lines.map(lambda r: ( r[0] ,
extract_features(r,categoriesMap,len(r) )))
DescDict = {
0: "暂时性网页(ephemeral)",
1: "长青网页(evergreen)"
}
for data in dataRDD.take(10):
predictResult = model.predict(data[1])
print " 网址: " +str(data[0])+"\n" +\
" ==>预测:"+ str(predictResult)+ \
" 说明:"+DescDict[predictResult] +"\n"

模型评估

  • 利用BinaryClassificationMetrics(scoreAndLabels)计算AUC评估结果,标准化后的模型都需要浮点类型的转换
def evaluateModel(model, validationData):
score = model.predict(validationData.map(lambda p: p.features))
# 这里的validationData实际上是一个元祖(label,features),而最后的map(lambda (x,y): (float(x),float(y))就是将rdd中的预测结果和实际结果进行类型转换
scoreAndLabels=score.zip(validationData \
.map(lambda p: p.label)) \
.map(lambda (x,y): (float(x),float(y)))
metrics = BinaryClassificationMetrics(scoreAndLabels)
AUC=metrics.areaUnderROC
return AUC

参数评估

  • 利用parametersEval()进行单个参数评估

trainData:输入的训练数据LabeledPointRDD

numIterations:使用SGD迭代的次数,默认为100

stepSize:每次执行SGD迭代步长的大小,默认为1

regParam:正则化参数,数值为 0-1 之间

def  parametersEval(trainData, validationData):
print("----- 评估numIterations参数使用 ---------")
evalParameter(trainData, validationData,"numIterations",
numIterationsList= [1, 3, 5, 15, 25],
stepSizeList=[100],
regParamList=[1 ])
print("----- 评估stepSize参数使用 ---------")
evalParameter(trainData, validationData,"stepSize",
numIterationsList=[25],
stepSizeList= [10, 50, 100, 200],
regParamList=[1])
print("----- 评估regParam参数使用 ---------")
evalParameter(trainData, validationData,"regParam",
numIterationsList=[25],
stepSizeList =[100],
regParamList=[0.01, 0.1, 1 ])
  • 利用trainEvaluateModel多个参数评估
def trainEvaluateModel(trainData,validationData,
numIterations, stepSize, regParam):
startTime = time()
model = SVMWithSGD.train(trainData, numIterations, stepSize, regParam)
AUC = evaluateModel(model, validationData)
duration = time() - startTime
print "训练评估:使用参数" + \
" numIterations="+str(numIterations) +\
" stepSize="+str(stepSize) + \
" regParam="+str(regParam) +\
" 所需时间="+str(duration) + \
" 结果AUC = " + str(AUC)
return (AUC,duration, numIterations, stepSize, regParam,model)
  • 多个参数同时评估
def evalAllParameter(trainData, validationData,
numIterationsList, stepSizeList, regParamList):
metrics = [trainEvaluateModel(trainData, validationData,
numIterations,stepSize, regParam )
for numIterations in numIterationsList
for stepSize in stepSizeList
for regParam in regParamList ] Smetrics = sorted(metrics, key=lambda k: k[0], reverse=True)
bestParameter=Smetrics[0] print("调校后最佳参数:numIterations:" + str(bestParameter[2]) +
" ,stepSize:" + str(bestParameter[3]) +
" ,regParam:" + str(bestParameter[4]) +
" ,结果AUC = " + str(bestParameter[0])) return bestParameter[5]

检验AUC

AUC = evaluateModel(model, testData)
print(AUC)

驱动函数

  • 注意修改参数为SVMWithSGD训练评估所需要的参数
if __name__ == "__main__":
print("RunSVMWithSGDBinary")
sc=CreateSparkContext()
print("==========数据准备阶段===============")
(trainData, validationData, testData, categoriesMap) =PrepareData(sc)
trainData.persist(); validationData.persist(); testData.persist()
print("==========训练评估阶段===============")
(AUC,duration, numIterations, stepSize, regParam,model)= \
trainEvaluateModel(trainData, validationData, 3, 50, 1)
if (len(sys.argv) == 2) and (sys.argv[1]=="-e"):
parametersEval(trainData, validationData)
elif (len(sys.argv) == 2) and (sys.argv[1]=="-a"):
print("-----所有参数训练评估找出最好的参数组合---------")
model=evalAllParameter(trainData, validationData,
[1, 3, 5, 15, 25],
[10, 50, 100, 200],
[0.01, 0.1, 1 ])
print("==========测试阶段===============")
auc = evaluateModel(model, testData)
print("使用test Data测试最佳模型,结果 AUC:" + str(auc))
print("==========预测数据===============")
PredictData(sc, model, categoriesMap)

朴素贝叶斯二元分类

环境准备

  • 导入我们需要包
# -*- coding: UTF-8 -*-
import sys
from time import time
import pandas as pd
import matplotlib.pyplot as plt
from pyspark import SparkConf, SparkContext
# 导入NavieBayes模块
from pyspark.mllib.classification import NaiveBayes
from pyspark.mllib.regression import LabeledPoint
import numpy as np
from pyspark.mllib.evaluation import BinaryClassificationMetrics
from pyspark.mllib.feature import StandardScaler
  • 设置SparkContext 环境
def SetLogger( sc ):
logger = sc._jvm.org.apache.log4j
logger.LogManager.getLogger("org"). setLevel( logger.Level.ERROR )
logger.LogManager.getLogger("akka").setLevel( logger.Level.ERROR )
logger.LogManager.getRootLogger().setLevel(logger.Level.ERROR) def SetPath(sc):
global Path
if sc.master[0:5]=="local" :
Path="file:/home/hduser/pythonsparkexample/PythonProject/"
else:
Path="hdfs://master:9000/user/hduser/"
def CreateSparkContext():
sparkConf = SparkConf() \
.setAppName("LogisticRegressionWithSGD") \
.set("spark.ui.showConsoleProgress", "false")
sc = SparkContext(conf = sparkConf)
print ("master="+sc.master)
SetLogger(sc)
SetPath(sc)
return (sc)

数据准备

  • 修改PrepareData()加入数据标准化,将withmean参数设置为False,在提取特征值时必须保证特征值大于0
def extract_label(record):
label=(record[-1])
return float(label) def extract_features(field,categoriesMap,featureEnd):
categoryIdx = categoriesMap[field[3]]
categoryFeatures = np.zeros(len(categoriesMap))
categoryFeatures[categoryIdx] = 1
numericalFeatures=[convert_float(field) for field in field[4: featureEnd]]
return np.concatenate(( categoryFeatures, numericalFeatures)) def convert_float(x):
ret=(0 if x=="?" else float(x))
return(0 if ret<0 else ret) #NaiveBayes 特征字段一定大于0,所以负数也转换为0 def PrepareData(sc):
#----------------------1.导入并转换数据-------------
print("开始导入数据...")
rawDataWithHeader = sc.textFile(Path+"data/train.tsv")
header = rawDataWithHeader.first()
rawData = rawDataWithHeader.filter(lambda x:x !=header)
rData=rawData.map(lambda x: x.replace("\"", ""))
lines = rData.map(lambda x: x.split("\t"))
print("共计:" + str(lines.count()) + "项")
#----------------------2.建立训练评估所需数据 RDD[LabeledPoint]-------------
print ("标准化之前:"),
categoriesMap = lines.map(lambda fields: fields[3]). \
distinct().zipWithIndex().collectAsMap()
labelRDD = lines.map(lambda r: extract_label(r))
featureRDD = lines.map(lambda r: extract_features(r,categoriesMap,len(r) - 1))
for i in featureRDD.first():
print (str(i)+","),
print ("") print ("标准化之后:"),
# 这里有个withmean参数设置为False
stdScaler = StandardScaler(withMean=False, withStd=True).fit(featureRDD)
ScalerFeatureRDD=stdScaler.transform(featureRDD)
for i in ScalerFeatureRDD.first():
print (str(i)+","), labelpoint=labelRDD.zip(ScalerFeatureRDD)
labelpointRDD=labelpoint.map(lambda r: LabeledPoint(r[0], r[1])) #----------------------3.以随机方式将数据分为3个部分并且返回-------------
(trainData, validationData, testData) = labelpointRDD.randomSplit([8, 1, 1])
print("将数据分trainData:" + str(trainData.count()) +
" validationData:" + str(validationData.count()) +
" testData:" + str(testData.count()))
return (trainData, validationData, testData, categoriesMap) #返回数据

模型训练

  • 利用NaiveBayes.train(trainData, lambdaParam)训练模型
  • 参数说明 NaiveBayes.train(input,lambda)
    • input:输入的训练数据 LabelPointRDD
    • lambda:设置lambda 参数,默认值为1.0
def trainEvaluateModel(trainData,validationData,lambdaParam):
startTime = time()
model = NaiveBayes.train(trainData,lambdaParam)
AUC = evaluateModel(model, validationData)
duration = time() - startTime
print "训练评估:使用参数" + \
" lambda="+str( lambdaParam) +\
" 所需时间="+str(duration) + \
" 结果AUC = " + str(AUC)
return (AUC,duration, lambdaParam,model) def evaluateModel(model, validationData):
score = model.predict(validationData.map(lambda p: p.features))
scoreAndLabels=score.zip(validationData \
.map(lambda p: p.label)) \
.map(lambda (x,y): (float(x),float(y)) )
metrics = BinaryClassificationMetrics(scoreAndLabels)
AUC=metrics.areaUnderROC
return( AUC)

模型评估

  • 利用 BinaryClassificationMetrics(scoreAndLabels)评估
def evaluateModel(model, validationData):
score = model.predict(validationData.map(lambda p: p.features))
scoreAndLabels=score.zip(validationData \
.map(lambda p: p.label)) \
.map(lambda (x,y): (float(x),float(y)) )
metrics = BinaryClassificationMetrics(scoreAndLabels)
AUC=metrics.areaUnderROC
return( AUC)

参数评估

  • 单个参数评估
def  parametersEval(trainData, validationData):
print("----- 评估lambda参数使用 ---------")
evalParameter(trainData, validationData,"lambdaParam",
lambdaParamList=[1.0, 3.0, 5.0, 15.0, 25.0,30.0,35.0,40.0,45.0,50.0,60.0])
  • 参数评估
def evalParameter(trainData, validationData, evalparm,
lambdaParamList): metrics = [trainEvaluateModel(trainData, validationData,regParam )
for regParam in lambdaParamList] evalparm="lambdaParam"
IndexList=lambdaParamList df = pd.DataFrame(metrics,index=IndexList,
columns=['AUC', 'duration',' lambdaParam','model'])
showchart(df,evalparm,'AUC','duration',0.5,0.7 )
  • 可视化函数
def showchart(df,evalparm ,barData,lineData,yMin,yMax):
ax = df[barData].plot(kind='bar', title =evalparm,figsize=(10,6),legend=True, fontsize=12)
ax.set_xlabel(evalparm,fontsize=12)
ax.set_ylim([yMin,yMax])
ax.set_ylabel(barData,fontsize=12)
ax2 = ax.twinx()
ax2.plot(df[[lineData ]].values, linestyle='-', marker='o', linewidth=2.0,color='r')
plt.show()
  • 多个参数同时评估
def evalAllParameter(training_RDD, validation_RDD, lambdaParamList):
metrics = [trainEvaluateModel(trainData, validationData, lambdaParam )
for lambdaParam in lambdaParamList ]
Smetrics = sorted(metrics, key=lambda k: k[0], reverse=True)
bestParameter=Smetrics[0] print("调校后最佳参数:lambdaParam:" + str(bestParameter[2]) +
" ,结果AUC = " + str(bestParameter[0]))
return bestParameter[3]

检验AUC

  • 利用模型评估AUC大小
AUC = evaluateModel(model, testData)
print(AUC)

模型预测

def PredictData(sc,model,categoriesMap):
print("开始导入数据...")
rawDataWithHeader = sc.textFile(Path+"data/test.tsv")
header = rawDataWithHeader.first()
rawData = rawDataWithHeader.filter(lambda x:x !=header)
rData=rawData.map(lambda x: x.replace("\"", ""))
lines = rData.map(lambda x: x.split("\t"))
print("共计:" + str(lines.count()) + "项")
dataRDD = lines.map(lambda r: ( r[0] ,
extract_features(r,categoriesMap,len(r) )))
DescDict = {
0: "暂时性网页(ephemeral)",
1: "长青网页(evergreen)"
}
for data in dataRDD.take(10):
predictResult = model.predict(data[1])
print " 网址: " +str(data[0])+"\n" +\
" ==>预测:"+ str(predictResult)+ \
" 说明:"+DescDict[predictResult] +"\n"

驱动函数

if __name__ == "__main__":
print("RunNaiveBayesBinary")
sc=CreateSparkContext()
print("==========数据准备阶段===============")
(trainData, validationData, testData, categoriesMap) =PrepareData(sc)
trainData.persist(); validationData.persist(); testData.persist()
print("==========训练评估阶段===============") (AUC,duration, lambdaParam,model)= \
trainEvaluateModel(trainData, validationData, 60.0) if (len(sys.argv) == 2) and (sys.argv[1]=="-e"):
parametersEval(trainData, validationData)
elif (len(sys.argv) == 2) and (sys.argv[1]=="-a"):
print("-----所有参数训练评估找出最好的参数组合---------")
model=evalAllParameter(trainData, validationData,
[1.0, 3.0, 5.0, 15.0, 25.0,30.0,35.0,40.0,45.0,50.0,60.0]) print("==========测试阶段===============")
auc = evaluateModel(model, testData)
print("使用test Data测试最佳模型,结果 AUC:" + str(auc))
print("==========预测数据===============")
PredictData(sc, model, categoriesMap)

决策树多元分类

环境准备

  • 导入需要的包
# -*- coding: UTF-8 -*-
import sys
from time import time
import pandas as pd
import matplotlib.pyplot as plt
from pyspark import SparkConf, SparkContext
from pyspark.mllib.tree import DecisionTree
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.evaluation import MulticlassMetrics
  • 设置SParkContext环境
def SetLogger( sc ):
logger = sc._jvm.org.apache.log4j
logger.LogManager.getLogger("org"). setLevel( logger.Level.ERROR )
logger.LogManager.getLogger("akka").setLevel( logger.Level.ERROR )
logger.LogManager.getRootLogger().setLevel(logger.Level.ERROR) def SetPath(sc):
global Path
if sc.master[0:5]=="local" :
Path="file:/home/hduser/pythonsparkexample/PythonProject/"
else:
Path="hdfs://master:9000/user/hduser/"
def CreateSparkContext():
sparkConf = SparkConf() \
.setAppName("LogisticRegressionWithSGD") \
.set("spark.ui.showConsoleProgress", "false")
sc = SparkContext(conf = sparkConf)
print ("master="+sc.master)
SetLogger(sc)
SetPath(sc)
return (sc)

数据准备

  • 执行 DecisionTree.trainClassifier 训练,规定label一定时从0开始的,所以在提取label时减去了1
def extract_label(record):
label=(record[-1])
return float(label)-1 def convert_float(x):
return (0 if x=="?" else float(x)) def extract_features(record,featureEnd):
# 这里的featureEnd就是 len(r) - 1
numericalFeatures=[convert_float(field) for field in record[0: featureEnd]]
return numericalFeatures def PrepareData(sc):
#----------------------1.导入并转换数据-------------
print("开始导入数据...")
rawData = sc.textFile(Path+"data/covtype.data")
print("共计:" + str(rawData.count()) + "项")
lines = rawData.map(lambda x: x.split(","))
#----------------------2.建立训练评估所需数据 RDD[LabeledPoint]-------------
labelpointRDD = lines.map(lambda r: LabeledPoint(
extract_label(r),
extract_features(r,len(r) - 1)))
#----------------------3.以随机方式将数据分为3个部分并且返回-------------
(trainData, validationData, testData) = labelpointRDD.randomSplit([8, 1, 1])
print("将数据分trainData:" + str(trainData.count())+\
" validationData:" + str(validationData.count()) +\
" testData:" + str(testData.count()))
print labelpointRDD.first()
return (trainData, validationData, testData)

模型训练

  • 利用DecisionTree.trainClassifier(trainData,numClasses=7,categoricalFeatruesInfo={},impurity,maxDepth,maxBins),因为这里的分类数目为7,所以我们将numClasses设置为7。
def trainEvaluateModel(trainData,validationData,impurityParm, maxDepthParm, maxBinsParm):
startTime = time()
model = DecisionTree.trainClassifier(trainData,\
numClasses=7, categoricalFeaturesInfo={}, \
impurity=impurityParm,
maxDepth=maxDepthParm,
maxBins=maxBinsParm)
accuracy = evaluateModel(model, validationData)
duration = time() - startTime
print "训练评估:使用参数" + \
" impurityParm= %s"%impurityParm+ \
" maxDepthParm= %s"%maxDepthParm+ \
" maxBinsParm = %d."%maxBinsParm + \
" 所需时间=%d"%duration + \
" 结果accuracy = %f " % accuracy
return (accuracy,duration, impurityParm, maxDepthParm, maxBinsParm,model)

模型评估

  • 利用MulticlassMetrics(scoreAndLabels).accuracy计算准确率
def evaluateModel(model, validationData):
score = model.predict(validationData.map(lambda p: p.features))
scoreAndLabels=score.zip(validationData.map(lambda p: p.label))
metrics = MulticlassMetrics(scoreAndLabels)
accuracy = metrics.accuracy
return( accuracy)

参数评估

  • 评估单个参数
def evalParameter(trainData, validationData, evaparm,impurityList, maxDepthList, maxBinsList):
metrics = [trainEvaluateModel(trainData, validationData, impurity,numIter, maxBins )
for impurity in impurityList for numIter in maxDepthList for maxBins in maxBinsList ]
if evaparm=="impurity":
IndexList=impurityList[:]
elif evaparm=="maxDepth":
IndexList=maxDepthList[:]
elif evaparm=="maxBins":
IndexList=maxBinsList[:]
df = pd.DataFrame(metrics,index=IndexList,
columns=['accuracy', 'duration','impurity', 'maxDepth', 'maxBins','model']) showchart(df,evaparm,'accuracy','duration',0.6,1.0 )
  • 评估多个参数
def  parametersEval(training_RDD, validation_RDD):
print("----- 评估impurity参数使用 ---------")
evalParameter(trainData, validationData,"impurity",
impurityList=["gini", "entropy"],
maxDepthList=[10],
maxBinsList=[10 ]) print("----- 评估maxDepth参数使用 ---------")
evalParameter(trainData, validationData,"maxDepth",
impurityList=["gini"],
maxDepthList=[3, 5, 10, 15, 20, 25],
maxBinsList=[10]) print("----- 评估maxBins参数使用 ---------")
evalParameter(trainData, validationData,"maxBins",
impurityList=["gini"],
maxDepthList =[10],
maxBinsList=[3, 5, 10, 50, 100, 200 ])
  • 利用pandas自带的绘图工具绘图
def showchart(df,evalparm ,barData,lineData,yMin,yMax):
ax = df[barData].plot(kind='bar', titl =evalparm,figsize=(10,6),legend=True, fontsize=12)
ax.set_xlabel(evalparm,fontsize=12)
ax.set_ylim([yMin,yMax])
ax.set_ylabel(barData,fontsize=12)
ax2 = ax.twinx()
ax2.plot(df[[lineData ]].values, linestyle='-', marker='o', linewidth=2.0,color='r')
plt.show()
  • 同时评估多个参数
def evalAllParameter(training_RDD, validation_RDD, impurityList, maxDepthList, maxBinsList):
metrics = [trainEvaluateModel(trainData, validationData, impurity,numIter, maxBins )
for impurity in impurityList for numIter in maxDepthList for maxBins in maxBinsList ]
Smetrics = sorted(metrics, key=lambda k: k[0], reverse=True)
bestParameter=Smetrics[0]
print("调校后最佳参数:impurity:" + str(bestParameter[2]) +
" ,maxDepth:" + str(bestParameter[3]) +
" ,maxBins:" + str(bestParameter[4]) +
" ,结果accuracy = " + str(bestParameter[0]))
return bestParameter[5]

检验AUC

auc = evaluateModel(model, testData)
return AUC

模型预测

def PredictData(sc,model):
#----------------------1.导入并转换数据-------------
rawData = sc.textFile(Path+"data/covtype.data")
print("共计:" + str(rawData.count()) + "项")
print("建立训练评估所需数据 RDD...")
lines = rawData.map(lambda x: x.split(","))
#----------------------2.建立预测所需数据 RDD[LabeledPoint]-------------
labelpointRDD = lines.map(lambda r: LabeledPoint(
extract_label(r), extract_features(r,len(r) - 1)))
#----------------------3.进行预测并显示结果-------------
for lp in labelpointRDD.take(100):
predict = model.predict(lp.features)
label=lp.label
features=lp.features
result = ("正确" if (label == predict) else "错误")
print("土地条件:海拔:" + str(features[0]) +
" 方位:" + str(features[1]) +
" 斜率:" + str(features[2]) +
" 水源垂直距离:" + str(features[3]) +
" 水源水平距离:" + str(features[4]) +
" 9点时阴影:" + str(features[5]) +
"....==>预测:" + str(predict) +
" 实际:" + str(label) + "结果:" + result)

驱动函数

if __name__ == "__main__":
print("RunDecisionTreeMulti")
sc=CreateSparkContext()
print("==========数据准备阶段===============")
(trainData, validationData, testData) =PrepareData(sc)
trainData.persist(); validationData.persist(); testData.persist()
print("==========训练评估阶段===============")
(AUC,duration, impurityParm, maxDepthParm, maxBinsParm,model)= \
trainEvaluateModel(trainData, validationData, "entropy", 15,50)
if (len(sys.argv) == 2) and (sys.argv[1]=="-e"):
parametersEval(trainData, validationData)
elif (len(sys.argv) == 2) and (sys.argv[1]=="-a"):
print("-----所有参数训练评估找出最好的参数组合---------")
model=evalAllParameter(trainData, validationData,
["gini", "entropy"],
[3, 5, 10, 15],
[3, 5, 10, 50 ]) print("==========测试阶段===============")
accuracy = evaluateModel(model, testData)
print("使用test Data测试最佳模型,结果 accuracy:" + str(accuracy))
print("==========预测数据===============")
PredictData(sc, model)
#print model.toDebugString()

决策树回归分析

环境准备

  • 导入我们需要的包
# -*- coding: UTF-8 -*-
import sys
from time import time
import pandas as pd
import matplotlib.pyplot as plt
from pyspark import SparkConf, SparkContext
from pyspark.mllib.tree import DecisionTree
from pyspark.mllib.regression import LabeledPoint
import numpy as np
from pyspark.mllib.evaluation import RegressionMetrics
import math
  • 搭建SparkContext环境
def SetLogger( sc ):
logger = sc._jvm.org.apache.log4j
logger.LogManager.getLogger("org"). setLevel( logger.Level.ERROR )
logger.LogManager.getLogger("akka").setLevel( logger.Level.ERROR )
logger.LogManager.getRootLogger().setLevel(logger.Level.ERROR) def SetPath(sc):
global Path
if sc.master[0:5]=="local" :
Path="file:/home/hduser/pythonsparkexample/PythonProject/"
else:
Path="hdfs://master:9000/user/hduser/"
#如果要在cluster模式运行(hadoop yarn 或Spark Stand alone),请按照书上的说明,先把文件上传到HDFS目录 def CreateSparkContext():
sparkConf = SparkConf() \
.setAppName("RunDecisionTreeRegression") \
.set("spark.ui.showConsoleProgress", "false")
sc = SparkContext(conf = sparkConf)
print ("master="+sc.master)
SetLogger(sc)
SetPath(sc)
return (sc)

数据准备

def extract_label(record):
label=(record[-1])
return float(label) def convert_float(x):
return (0 if x=="?" else float(x)) def extract_features(record,featureEnd):
featureSeason=[convert_float(field) for field in record[2]]
features=[convert_float(field) for field in record[4: featureEnd-2]]
return np.concatenate( (featureSeason, features)) def PrepareData(sc):
#----------------------1.导入并转换数据-------------
print("开始导入数据...")
rawDataWithHeader = sc.textFile(Path+"data/hour.csv")
header = rawDataWithHeader.first()
rawData = rawDataWithHeader.filter(lambda x:x !=header)
lines = rawData.map(lambda x: x.split(","))
print (lines.first())
print("共计:" + str(lines.count()) + "项")
#----------------------2.建立训练评估所需数据 RDD[LabeledPoint]-------------
labelpointRDD = lines.map(lambda r:LabeledPoint(
extract_label(r),
extract_features(r,len(r) - 1))) print labelpointRDD.first()
#----------------------3.以随机方式将数据分为3个部分并且返回-------------
(trainData, validationData, testData) = labelpointRDD.randomSplit([8, 1, 1])
print("将数据分trainData:" + str(trainData.count()) +
" validationData:" + str(validationData.count()) +
" testData:" + str(testData.count()))
#print labelpointRDD.first()
return (trainData, validationData, testData) #返回数据

训练模型

  • 在做决策树回归分析时,我们必须使用DecisionTree.trainRegressor模型,且无numClasses参数,而且impurity固定为variance
def trainEvaluateModel(trainData,validationData,
impurityParm, maxDepthParm, maxBinsParm):
startTime = time()
model = DecisionTree.trainRegressor(trainData,
categoricalFeaturesInfo={}, \
impurity=impurityParm,
maxDepth=maxDepthParm,
maxBins=maxBinsParm)
RMSE = evaluateModel(model, validationData)
duration = time() - startTime
print "训练评估:使用参数" + \
" impurityParm= %s"%impurityParm+ \
" maxDepthParm= %s"%maxDepthParm+ \
" maxBinsParm = %d."%maxBinsParm + \
" 所需时间=%d"%duration + \
" 结果RMSE = %f " % RMSE
return (RMSE,duration, impurityParm, maxDepthParm, maxBinsParm,model)

模型评估

  • RSME评估模型准确率,Root Mean Square Error,通常RSME越小,代表的误差就越小,即代表了“计算预测结果” 与 “标签字段” 的误差平均值。
  • 使用RegressionMetrics(scoreAndLabels).rootMeanSquaredError计算RMSE。
def evaluateModel(model, validationData):
score = model.predict(validationData.map(lambda p: p.features))
scoreAndLabels=score.zip(validationData.map(lambda p: p.label))
metrics = RegressionMetrics(scoreAndLabels)
RMSE=metrics.rootMeanSquaredError
return( RMSE)

参数评估

  • 单个参数评估
def  parametersEval(training_RDD, validation_RDD):

    print("----- 评估maxDepth参数使用 ---------")
evalParameter(training_RDD, validation_RDD,"maxDepth",
impurityList=["variance"],
maxDepthList =[3, 5, 10, 15, 20, 25] ,
maxBinsList=[10])
print("----- 评估maxBins参数使用 ---------")
evalParameter(training_RDD, validation_RDD,"maxBins",
impurityList=["variance"],
maxDepthList=[10],
maxBinsList=[3, 5, 10, 50, 100, 200 ])
  • 多个参数评估
def evalParameter(trainData, validationData, evaparm,impurityList, maxDepthList, maxBinsList):
metrics = [trainEvaluateModel(trainData, validationData, impurity,maxdepth, maxBins )
for impurity in impurityList
for maxdepth in maxDepthList
for maxBins in maxBinsList ]
if evaparm=="impurity":
IndexList=impurityList[:]
elif evaparm=="maxDepth":
IndexList=maxDepthList[:]
elif evaparm=="maxBins":
IndexList=maxBinsList[:] df = pd.DataFrame(metrics,index=IndexList,
columns=['RMSE', 'duration','impurityParm', 'maxDepthParm', 'maxBinsParm','model']) showchart(df,evaparm,'RMSE','duration',0,200 )
  • 可视化
def showchart(df,evalparm ,barData,lineData,yMin,yMax):
ax = df[barData].plot(kind='bar', title =evalparm,figsize=(10,6),legend=True, fontsize=12)
ax.set_xlabel(evalparm,fontsize=12)
ax.set_ylim([yMin,yMax])
ax.set_ylabel(barData,fontsize=12)
ax2 = ax.twinx()
ax2.plot(df[[lineData ]].values, linestyle='-', marker='o', linewidth=2.0,color='r')
plt.show()
  • 多个参数同时评估
def evalAllParameter(training_RDD, validation_RDD, impurityList, maxDepthList, maxBinsList):
metrics = [trainEvaluateModel(trainData, validationData, impurity,maxdepth, maxBins )
for impurity in impurityList
for maxdepth in maxDepthList
for maxBins in maxBinsList ]
Smetrics = sorted(metrics, key=lambda k: k[0])
bestParameter=Smetrics[0] print("调校后最佳参数:impurity:" + str(bestParameter[2]) +
" ,maxDepth:" + str(bestParameter[3]) +
" ,maxBins:" + str(bestParameter[4]) +
" ,结果RMSE = " + str(bestParameter[0])) return bestParameter[5]

检验AUC

RMSE = evaluateModel(model, testData)
return RMSE

模型预测

def PredictData(sc,model):
#----------------------1.导入并转换数据-------------
print("开始导入数据...")
rawDataWithHeader = sc.textFile(Path+"data/hour.csv")
header = rawDataWithHeader.first()
rawData = rawDataWithHeader.filter(lambda x:x !=header)
lines = rawData.map(lambda x: x.split(","))
#print (lines.first())
print("共计:" + str(lines.count()) + "项")
#----------------------2.建立训练评估所需数据 LabeledPoint RDD-------------
labelpointRDD = lines.map(lambda r: LabeledPoint(
extract_label(r),
extract_features(r,len(r) - 1)))
#----------------------3.定义字典----------------
SeasonDict = { 1 : "春", 2 : "夏", 3 :"秋", 4 : "冬" }
HoildayDict={ 0 : "非假日", 1 : "假日" }
WeekDict = {0:"一",1:"二",2:"三",3:"四",4 :"五",5:"六",6:"日"}
WorkDayDict={ 1 : "工作日", 0 : "非工作日" }
WeatherDict={ 1 : "晴", 2 : "阴", 3 : "小雨", 4 : "大雨" }
#----------------------4.进行预测并显示结果--------------
for lp in labelpointRDD.take(100):
predict = int(model.predict(lp.features))
label=lp.label
features=lp.features
result = ("正确" if (label == predict) else "错误")
error = math.fabs(label - predict)
dataDesc=" 特征: "+SeasonDict[features[0]] +"季,"+\
str(features[1]) + "月," +\
str(features[2]) + "时,"+ \
HoildayDict[features[3]] +","+\
"星期"+WeekDict[features[4]]+","+ \
WorkDayDict[features[5]]+","+\
WeatherDict[features[6]]+","+\
str(features[7] * 41)+ "度,"+\
"体感" + str(features[8] * 50) + "度," +\
"湿度" + str(features[9] * 100) + ","+\
"风速" + str(features[10] * 67) +\
" ==> 预测结果:" + str(predict )+\
" , 实际:" + str(label) + result +", 误差:" + str(error)
print dataDesc

驱动函数

if __name__ == "__main__":
print("RunDecisionTreeRegression")
sc=CreateSparkContext()
print("==========数据准备阶段===============")
(trainData, validationData, testData) =PrepareData(sc)
trainData.persist(); validationData.persist(); testData.persist()
print("==========训练评估阶段===============")
(AUC,duration, impurityParm, maxDepthParm, maxBinsParm,model)= \
trainEvaluateModel(trainData, validationData, "variance", 10, 100)
if (len(sys.argv) == 2) and (sys.argv[1]=="-e"):
parametersEval(trainData, validationData)
elif (len(sys.argv) == 2) and (sys.argv[1]=="-a"):
print("-----所有参数训练评估找出最好的参数组合---------")
model=evalAllParameter(trainData, validationData,
["variance"],
[3, 5, 10, 15, 20, 25],
[3, 5, 10, 50, 100, 200 ])
print("==========测试阶段===============")
RMSE = evaluateModel(model, testData)
print("使用test Data测试最佳模型,结果 RMSE:" + str(RMSE))
print("==========预测数据===============")
PredictData(sc, model)
#print model.toDebugString()

Spark机器学习之MLlib整理分析的更多相关文章

  1. spark(1.1) mllib 源代码分析

    在spark mllib 1.1加入版本stat包,其中包括一些统计数据有关的功能.本文分析中卡方检验和实施的主要原则: 一个.根本 在stat包实现Pierxunka方检验,它包括以下类别 (1)适 ...

  2. 掌握Spark机器学习库-07-回归分析概述

    1)回归与分类算法的区别 回归的预测结果是连续的,分类的预测结果是离散的. 2)spark实现的回归算法有: 3)通过相关系数衡量线性关系的程度

  3. spark机器学习从0到1介绍入门之(一)

      一.什么是机器学习 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行 ...

  4. 【原】Learning Spark (Python版) 学习笔记(四)----Spark Sreaming与MLlib机器学习

    本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10-11 章主要讲的是Spark Streaming ...

  5. Spark Sreaming与MLlib机器学习

    Spark Sreaming与MLlib机器学习 本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10 ...

  6. 学习Hadoop+Spark大数据巨量分析与机器学习整合开发-windows利用虚拟机实现模拟多节点集群构建

    记录学习<Hadoop+Spark大数据巨量分析与机器学习整合开发>这本书. 第五章 Hadoop Multi Node Cluster windows利用虚拟机实现模拟多节点集群构建 5 ...

  7. Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API

    Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API 关键词:Local vector,Labeled point,Local matrix,Distrib ...

  8. Spark机器学习8· 文本处理(spark-shell)

    Spark机器学习 自然语言处理(NLP,Natural Language Processing) 提取特征 建模 机器学习 TF-IDF(词频 term frequency–逆向文件频率 inver ...

  9. 掌握Spark机器学习库(课程目录)

    第1章 初识机器学习 在本章中将带领大家概要了解什么是机器学习.机器学习在当前有哪些典型应用.机器学习的核心思想.常用的框架有哪些,该如何进行选型等相关问题. 1-1 导学 1-2 机器学习概述 1- ...

随机推荐

  1. P3378 【模板】堆

    题目描述 如题,初始小根堆为空,我们需要支持以下3种操作: 操作1: 1 x 表示将x插入到堆中 操作2: 2 输出该小根堆内的最小数 操作3: 3 删除该小根堆内的最小数 输入输出格式 输入格式: ...

  2. MySQL导入到SQLServer

    Mysql是在Linux环境服务器,MSSQL在windows服务器上 1.在MSServer中安装VPN 2.为VPN配置Mysql服务器账号 3.账号中的文件 4.在MSSQL服务器上安装mysq ...

  3. Elasticsearch 入门 - 基本概念

    NRT Elasticsearch 是一个 接近实时 的搜索平台.这意味着从你索引文档到其可以被搜索中间存在着一个轻微的延迟(通常为1秒钟). Cluster 一个或多个节点的完整数据.聚合索引和搜索 ...

  4. CentOS中防火墙相关的命令(CentOS7中演示)

    CentOS中防火墙程序主要是firewall和iptables,CentOS7中firewall服务已经默认安装好了,而iptables服务需要自己用yum  install  iptabes-se ...

  5. 工具-VS2015前端开发工具简介

    每个涉及的工具库都给出了入门介绍.基本概念,以及在VS和ASP.NET中的用法.这个白皮书完全就是一个非常难得的前端开发入门手册. 具体涉及到的工具库有: 流行的JS任务执行器:Grunt和Gulp. ...

  6. Windows-命令窗口-强制关机命令

    Windows +R CMD  命令行窗口shutdown -s -f -t 以上参数中的-s代表关机,-f表示强制关闭所有应用程序,-t 00代表不用等待立即执行(时间以秒计算,把时间改长就变成了定 ...

  7. Ubuntu16.04编译cmake源码

    编译版本:cmake-3.8.0-rc2 为了能够编译出ccmake和cmake-gui,首先需要安装libncurses5-dev sudo apt install libncurses5-dev ...

  8. HDU 5078 Revenge of LIS II(dp LIS)

    Problem Description In computer science, the longest increasing subsequence problem is to find a sub ...

  9. UVA 11346 - Probability 数学积分

    Consider rectangular coordinate system and point L(X, Y ) which is randomly chosen among all pointsi ...

  10. DirectUI界面编程(四)界面布局详解

    Duilib的界面布局使用xml文件进行描述,在Duilib v1.1版本的xml布局文件中我们可以使用以下这些标签(后续版本标签有扩充): 这些标签总的来讲可以分为三类: 窗口类,该类别中只有一个W ...