HDU 2303 The Embarrassed Cryptographer
The Embarrassed Cryptographer
题意
- 给一个两个素数乘积(1e100)K, 给以个数L(1e6), 判断K的两个素数是不是都大于L
题解
- 对于这么大的范围,素数肯定是要打表(可采用埃筛,欧拉筛,莫比乌斯筛);这里有别人模板
- 简单的想法是遍历表中<L的素数去模K(即便对K分解也是如此办的)
- 但K很大需要高精度取模,由于足够大需要转换成K,L都足够大需要转换成千进制
代码
素数打表
int isp[maxn];// isp[i]=0 i是素数
int su[maxn];// su[i]=p 第i个素数是p
int cnt;
void get_prime(){
mm0(isp);
cnt=0;
for(int i=2;i<=maxn;i++){
if(isp[i]==0){
su[++cnt]=i;
}
for(int j=1;su[j]<su[cnt]&&su[j]*i<=maxn;j++){
isp[su[j]*i]=1;// 非素数
if(i%su[j]==0) break;//一个优化,每个被删掉的合数都是以最小素因子标记,这样可以避免重复删掉合数
}
}
//确定能满足循环(找比L小的素数)结束
su[++cnt]=1e9+7;
}
高精度取模
基本原理:
(a+b)%c=(a%c+b%c)%c (1)
(ab)%c=((a%c)(b%c))%c (2)
对于(2) 式这样也成立 (ab)%c=((a%c)b)%c
证明可通过a=ck1+t1,b=ck2+t2 形式证明
所以如123%13 可以先求 1%13,然后求12%13,最后求123%13
我们这里 展示十进制情况:
int get_mod(int p){
int m=0;
for(int i=0;i<strlen(s);i++){
m=((m*10)%p+(s[i]-'0')%p)%p;
}
return m;
}
//值得一提的是 s[0]式最位,对这份代码进行改变时,需注意自己的存储哪一位时高位
题目的AC代码
#include <bits/stdc++.h>
typedef long long ll;
#define mm0(x) memset(x,0,sizeof(x))
#define mm1(x) memset(x,0x1f,sizeof(x))
#define mm2(x) memset(x,0x3f,sizeof(x))
#define mm3(x) memset(x,0xff,sizeof(x))
const int maxn = 1e6 + 5;
const int maxm = 1e5+5;
//author:fridayfang
//date:18.8月 21
//global varibles
//大数(高精度)取模+素数筛法
char s[102];//所有因子 K 10^100
int kt[34];
int isp[maxn];// isp[i]=0 i是素数
int su[maxn];// su[i]=p 第i个素数是p
int cnt;
void get_prime(){
mm0(isp);
cnt=0;
for(int i=2;i<=maxn;i++){
if(isp[i]==0){
su[++cnt]=i;
}
for(int j=1;su[j]<su[cnt]&&su[j]<=maxn/i;j++){
isp[su[j]*i]=1;// 非素数
if(i%su[j]==0) break;
}
}
//确定能满足循环(找比L小的素数)结束
su[++cnt]=1e9+7;
}
//get prime
int get_mod(int p,int po){
int m=0;
for(int i=po;i>=1;i--){
m=((m*1000)%p+(kt[i])%p)%p;
}
return m;
}
/*
int get_mod(int p){
int m=0;
for(int i=0;i<strlen(s);i++){
m=((m*10)%p+(s[i]-'0')%p)%p;
}
return m;
}
*/
void read(){
int L;
while(true){
scanf("%s",s);
scanf("%d",&L);
if(L==0) break;
//转换为千进制
int po=0;
int len=strlen(s);
int j;
for(j=len-1;j-2>=0;j=j-3){
kt[++po]=((s[j]-'0')+(s[j-1]-'0')*10+(s[j-2]-'0')*100);
}
po++;
kt[po]=0;
int mul=1;
while(j>=0){
kt[po]+=(s[j]-'0')*mul;
j--;
mul=mul*10;
}
//printf("kt%d %d\n",kt[1],kt[2]);
int i=0;
bool good=true;
while(su[++i]<L){
//printf("mod %s %d %d\n",s,su[i],get_mod(su[i],po));
if(get_mod(su[i],po)==0){good=false;break;}
}
if(good) printf("GOOD\n");
else printf("BAD %d\n",su[i]);
}
}
int main(){
get_prime();
read();
return 0;
}
需要对高精度和数论进行补题
HDU 2303 The Embarrassed Cryptographer的更多相关文章
- POJ 2635 The Embarrassed Cryptographer
大数取MOD... The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1 ...
- (POJ2635)The Embarrassed Cryptographer(大数取模)
The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13041 Accep ...
- POJ2635——The Embarrassed Cryptographer(高精度取模+筛选取素数)
The Embarrassed Cryptographer DescriptionThe young and very promising cryptographer Odd Even has imp ...
- poj2635The Embarrassed Cryptographer(同余膜定理)
The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15069 A ...
- [ACM] POJ 2635 The Embarrassed Cryptographer (同余定理,素数打表)
The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11978 A ...
- POJ 2635 The Embarrassed Cryptographer (千进制,素数筛,同余定理)
The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15767 A ...
- The Embarrassed Cryptographer(高精度取模+同余模定理)
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11435 Accepted: 3040 Description The ...
- POJ - 2635 E - The Embarrassed Cryptographer
The young and very promising cryptographer Odd Even has implemented the security module of a large s ...
- POJ2635The Embarrassed Cryptographer(大数取余+素数筛选+好题)
题目链接 题意:K是由两个素数乘积,如果最小的素数小于L,输出BAD最小的素数,否则输出GOOD 分析 素数打表将 L 大点的素数打出来,一定要比L大,然后就开始枚举,只需K对 素数 取余 看看是否为 ...
随机推荐
- redis过期key删除
LZ一开始配置到启动类里面,结果出现了主线程阻塞的情况. 如下是流程: 首先修改配置文件redis.conf中的:notify-keyspace-events Ex,默认为notify-keyspac ...
- 网络教程(2)光纤和RF编码简介
光纤: 想象一个symbol是light off 另一个是light on 另一种传输信息的方式using radio waves(无线电波: 这个router 内部以很高的频率变换电压 (例如2.4 ...
- 记Spring搭建功能完整的个人博客「Oyster」全过程[其二] Idea中Maven+SpringBoot多模块项目开发的设计和各种坑(模块间依赖和打包问题)
大家好嘞,今天闲着没事干开写写博客,记录一下Maven+SpringBoot的多模块设计和遇到的坑. 多模块设计 简单说明一下截止目前的需求: 需要RESTful API:对文章.标签.分类和评论等的 ...
- 训练1-K
一个整数,只知道前几位,不知道末二位,被另一个整数除尽了,那么该数的末二位该是什么呢? Input 输入数据有若干组,每组数据包含二个整数a,b(0<a<10000, 10<b< ...
- ACM成长之路
前几天在网上看到,转过来时刻督促一下自己. ACM队不是为了一场比赛而存在的,为的是队员的整体提高. 大学期间,ACM队队员必须要学好的课程有: l C/C++两种语言 l 高等数学 l 线性代数 l ...
- Linux进程间通信--进程,信号,管道,消息队列,信号量,共享内存
Linux进程间通信--进程,信号,管道,消息队列,信号量,共享内存 参考:<linux编程从入门到精通>,<Linux C程序设计大全>,<unix环境高级编程> ...
- 关于错误CSC : error CS0006:未能找到元数据文件
在不同的解决方案中把一个项目搬来搬去,终于出现了传说的CSC : error CS0006.编译的时候总是提示一个引用中不存在的项找不到.无论怎样删除项目,删除引用都没法通过生成. 最终解决方案: 用 ...
- --- Error: failed to execute '.\ARMCC\bin\ArmAsm'
1.KEIL4在开发STM32程序时报: Error: failed to execute '.\ARMCC\bin\ArmAsm' 或是Error: failed to execute '.\ARM ...
- php RSA 简单实现
这是rsa_private_key.pem-----BEGIN PRIVATE KEY----- MIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQC ...
- 【简单的案例分享,停机10分钟】10204升级CRS&DB的PSU至102044
发现一个现象,AIX5.3+HACMP+10.2.0.4RAC+RAW的环境,执行五六年的数据库crsd.log都会报下面错误: ----------------------------------- ...