Logistic Ordinal Regression
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
数据统计分析项目联系QQ:231469242
http://fa.bianp.net/blog/2013/logistic-ordinal-regression/
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 24 09:21:01 2017 @author: toby
""" # Import standard packages
import numpy as np # additional packages
from sklearn import metrics
from scipy import linalg, optimize, sparse
import warnings BIG = 1e10
SMALL = 1e-12 def phi(t):
''' logistic function, returns 1 / (1 + exp(-t)) ''' idx = t > 0
out = np.empty(t.size, dtype=np.float)
out[idx] = 1. / (1 + np.exp(-t[idx]))
exp_t = np.exp(t[~idx])
out[~idx] = exp_t / (1. + exp_t)
return out def log_logistic(t):
''' (minus) logistic loss function, returns log(1 / (1 + exp(-t))) ''' idx = t > 0
out = np.zeros_like(t)
out[idx] = np.log(1 + np.exp(-t[idx]))
out[~idx] = (-t[~idx] + np.log(1 + np.exp(t[~idx])))
return out def ordinal_logistic_fit(X, y, alpha=0, l1_ratio=0, n_class=None, max_iter=10000,
verbose=False, solver='TNC', w0=None):
'''
Ordinal logistic regression or proportional odds model.
Uses scipy's optimize.fmin_slsqp solver. Parameters
----------
X : {array, sparse matrix}, shape (n_samples, n_feaures)
Input data
y : array-like
Target values
max_iter : int
Maximum number of iterations
verbose: bool
Print convergence information Returns
-------
w : array, shape (n_features,)
coefficients of the linear model
theta : array, shape (k,), where k is the different values of y
vector of thresholds
''' X = np.asarray(X)
y = np.asarray(y)
w0 = None if not X.shape[0] == y.shape[0]:
raise ValueError('Wrong shape for X and y') # .. order input ..
idx = np.argsort(y)
idx_inv = np.zeros_like(idx)
idx_inv[idx] = np.arange(idx.size)
X = X[idx]
y = y[idx].astype(np.int)
# make them continuous and start at zero
unique_y = np.unique(y)
for i, u in enumerate(unique_y):
y[y == u] = i
unique_y = np.unique(y) # .. utility arrays used in f_grad ..
alpha = 0.
k1 = np.sum(y == unique_y[0])
E0 = (y[:, np.newaxis] == np.unique(y)).astype(np.int)
E1 = np.roll(E0, -1, axis=-1)
E1[:, -1] = 0.
E0, E1 = map(sparse.csr_matrix, (E0.T, E1.T)) def f_obj(x0, X, y):
"""
Objective function
"""
w, theta_0 = np.split(x0, [X.shape[1]])
theta_1 = np.roll(theta_0, 1)
t0 = theta_0[y]
z = np.diff(theta_0) Xw = X.dot(w)
a = t0 - Xw
b = t0[k1:] - X[k1:].dot(w)
c = (theta_1 - theta_0)[y][k1:] if np.any(c > 0):
return BIG #loss = -(c[idx] + np.log(np.exp(-c[idx]) - 1)).sum()
loss = -np.log(1 - np.exp(c)).sum() loss += b.sum() + log_logistic(b).sum() \
+ log_logistic(a).sum() \
+ .5 * alpha * w.dot(w) - np.log(z).sum() # penalty
if np.isnan(loss):
pass
#import ipdb; ipdb.set_trace()
return loss def f_grad(x0, X, y):
"""
Gradient of the objective function
"""
w, theta_0 = np.split(x0, [X.shape[1]])
theta_1 = np.roll(theta_0, 1)
t0 = theta_0[y]
t1 = theta_1[y]
z = np.diff(theta_0) Xw = X.dot(w)
a = t0 - Xw
b = t0[k1:] - X[k1:].dot(w)
c = (theta_1 - theta_0)[y][k1:] # gradient for w
phi_a = phi(a)
phi_b = phi(b)
grad_w = -X[k1:].T.dot(phi_b) + X.T.dot(1 - phi_a) + alpha * w # gradient for theta
idx = c > 0
tmp = np.empty_like(c)
tmp[idx] = 1. / (np.exp(-c[idx]) - 1)
tmp[~idx] = np.exp(c[~idx]) / (1 - np.exp(c[~idx])) # should not need
grad_theta = (E1 - E0)[:, k1:].dot(tmp) \
+ E0[:, k1:].dot(phi_b) - E0.dot(1 - phi_a) grad_theta[:-1] += 1. / np.diff(theta_0)
grad_theta[1:] -= 1. / np.diff(theta_0)
out = np.concatenate((grad_w, grad_theta))
return out def f_hess(x0, s, X, y):
x0 = np.asarray(x0)
w, theta_0 = np.split(x0, [X.shape[1]])
theta_1 = np.roll(theta_0, 1)
t0 = theta_0[y]
t1 = theta_1[y]
z = np.diff(theta_0) Xw = X.dot(w)
a = t0 - Xw
b = t0[k1:] - X[k1:].dot(w)
c = (theta_1 - theta_0)[y][k1:] D = np.diag(phi(a) * (1 - phi(a)))
D_= np.diag(phi(b) * (1 - phi(b)))
D1 = np.diag(np.exp(-c) / (np.exp(-c) - 1) ** 2)
Ex = (E1 - E0)[:, k1:].toarray()
Ex0 = E0.toarray()
H_A = X[k1:].T.dot(D_).dot(X[k1:]) + X.T.dot(D).dot(X)
H_C = - X[k1:].T.dot(D_).dot(E0[:, k1:].T.toarray()) \
- X.T.dot(D).dot(E0.T.toarray())
H_B = Ex.dot(D1).dot(Ex.T) + Ex0[:, k1:].dot(D_).dot(Ex0[:, k1:].T) \
- Ex0.dot(D).dot(Ex0.T) p_w = H_A.shape[0]
tmp0 = H_A.dot(s[:p_w]) + H_C.dot(s[p_w:])
tmp1 = H_C.T.dot(s[:p_w]) + H_B.dot(s[p_w:])
return np.concatenate((tmp0, tmp1)) import ipdb; ipdb.set_trace()
import pylab as pl
pl.matshow(H_B)
pl.colorbar()
pl.title('True')
import numdifftools as nd
Hess = nd.Hessian(lambda x: f_obj(x, X, y))
H = Hess(x0)
pl.matshow(H[H_A.shape[0]:, H_A.shape[0]:])
#pl.matshow()
pl.title('estimated')
pl.colorbar()
pl.show() def grad_hess(x0, X, y):
grad = f_grad(x0, X, y)
hess = lambda x: f_hess(x0, x, X, y)
return grad, hess x0 = np.random.randn(X.shape[1] + unique_y.size) / X.shape[1]
if w0 is not None:
x0[:X.shape[1]] = w0
else:
x0[:X.shape[1]] = 0.
x0[X.shape[1]:] = np.sort(unique_y.size * np.random.rand(unique_y.size)) #print('Check grad: %s' % optimize.check_grad(f_obj, f_grad, x0, X, y))
#print(optimize.approx_fprime(x0, f_obj, 1e-6, X, y))
#print(f_grad(x0, X, y))
#print(optimize.approx_fprime(x0, f_obj, 1e-6, X, y) - f_grad(x0, X, y))
#import ipdb; ipdb.set_trace() def callback(x0):
x0 = np.asarray(x0)
# print('Check grad: %s' % optimize.check_grad(f_obj, f_grad, x0, X, y))
if verbose:
# check that gradient is correctly computed
print('OBJ: %s' % f_obj(x0, X, y)) if solver == 'TRON':
import pytron
out = pytron.minimize(f_obj, grad_hess, x0, args=(X, y))
else:
options = {'maxiter' : max_iter, 'disp': 0, 'maxfun':10000}
out = optimize.minimize(f_obj, x0, args=(X, y), method=solver,
jac=f_grad, hessp=f_hess, options=options, callback=callback) if not out.success:
warnings.warn(out.message)
w, theta = np.split(out.x, [X.shape[1]])
return w, theta def ordinal_logistic_predict(w, theta, X):
"""
Parameters
----------
w : coefficients obtained by ordinal_logistic
theta : thresholds
"""
unique_theta = np.sort(np.unique(theta))
out = X.dot(w)
unique_theta[-1] = np.inf # p(y <= max_level) = 1
tmp = out[:, None].repeat(unique_theta.size, axis=1)
return np.argmax(tmp < unique_theta, axis=1) def main():
DOC = """
================================================================================
Compare the prediction accuracy of different models on the boston dataset
================================================================================
"""
print(DOC)
from sklearn import cross_validation, datasets
boston = datasets.load_boston()
X, y = boston.data, np.round(boston.target)
#X -= X.mean()
y -= y.min() idx = np.argsort(y)
X = X[idx]
y = y[idx]
cv = cross_validation.ShuffleSplit(y.size, n_iter=50, test_size=.1, random_state=0)
score_logistic = []
score_ordinal_logistic = []
score_ridge = []
for i, (train, test) in enumerate(cv):
#test = train
if not np.all(np.unique(y[train]) == np.unique(y)):
# we need the train set to have all different classes
continue
assert np.all(np.unique(y[train]) == np.unique(y))
train = np.sort(train)
test = np.sort(test)
w, theta = ordinal_logistic_fit(X[train], y[train], verbose=True,
solver='TNC')
pred = ordinal_logistic_predict(w, theta, X[test])
s = metrics.mean_absolute_error(y[test], pred)
print('ERROR (ORDINAL) fold %s: %s' % (i+1, s))
score_ordinal_logistic.append(s) from sklearn import linear_model
clf = linear_model.LogisticRegression(C=1.)
clf.fit(X[train], y[train])
pred = clf.predict(X[test])
s = metrics.mean_absolute_error(y[test], pred)
print('ERROR (LOGISTIC) fold %s: %s' % (i+1, s))
score_logistic.append(s) from sklearn import linear_model
clf = linear_model.Ridge(alpha=1.)
clf.fit(X[train], y[train])
pred = np.round(clf.predict(X[test]))
s = metrics.mean_absolute_error(y[test], pred)
print('ERROR (RIDGE) fold %s: %s' % (i+1, s))
score_ridge.append(s) print()
print('MEAN ABSOLUTE ERROR (ORDINAL LOGISTIC): %s' % np.mean(score_ordinal_logistic))
print('MEAN ABSOLUTE ERROR (LOGISTIC REGRESSION): %s' % np.mean(score_logistic))
print('MEAN ABSOLUTE ERROR (RIDGE REGRESSION): %s' % np.mean(score_ridge))
# print('Chance level is at %s' % (1. / np.unique(y).size)) return np.mean(score_ridge) if __name__ == '__main__':
out = main()
print(out)
TL;DR: I've implemented a logistic ordinal regression or proportional odds model. Here is the Python code
The logistic ordinal regression model, also known as the proportional odds was introduced in the early 80s by McCullagh [1, 2] and is a generalized linear model specially tailored for the case of predicting ordinal variables, that is, variables that are discrete (as in classification) but which can be ordered (as in regression). It can be seen as an extension of the logistic regression model to the ordinal setting.
Given X∈Rn×pX∈Rn×p input data and y∈Nny∈Nn target values. For simplicity we assume yy is a non-decreasing vector, that is, y1≤y2≤...y1≤y2≤.... Just as the logistic regression models posterior probability P(y=j|Xi)P(y=j|Xi) as the logistic function, in the logistic ordinal regression we model thecummulative probability as the logistic function. That is,
P(y≤j|Xi)=ϕ(θj−wTXi)=11+exp(wTXi−θj)P(y≤j|Xi)=ϕ(θj−wTXi)=11+exp(wTXi−θj)
where w,θw,θ are vectors to be estimated from the data and ϕϕ is the logistic function defined as ϕ(t)=1/(1+exp(−t))ϕ(t)=1/(1+exp(−t)).
Toy example with three classes denoted in different colors. Also shown the vector of coefficients ww and the thresholds θ0θ0 and θ1θ1
Compared to multiclass logistic regression, we have added the constrain that the hyperplanes that separate the different classes are parallel for all classes, that is, the vector ww is common across classes. To decide to which class will XiXi be predicted we make use of the vector of thresholds θθ. If there are KK different classes, θθ is a non-decreasing vector (that is, θ1≤θ2≤...≤θK−1θ1≤θ2≤...≤θK−1) of size K−1K−1. We will then assign the class jj if the prediction wTXwTX (recall that it's a linear model) lies in the interval [θj−1,θj[[θj−1,θj[. In order to keep the same definition for extremal classes, we define θ0=−∞θ0=−∞ and θK=+∞θK=+∞.
The intuition is that we are seeking a vector ww such that XwXw produces a set of values that are well separated into the different classes by the different thresholds θθ. We choose a logistic function to model the probability P(y≤j|Xi)P(y≤j|Xi) but other choices are possible. In the proportional hazards model 1 the probability is modeled as −log(1−P(y≤j|Xi))=exp(θj−wTXi)−log(1−P(y≤j|Xi))=exp(θj−wTXi). Other link functions are possible, where the link function satisfies link(P(y≤j|Xi))=θj−wTXilink(P(y≤j|Xi))=θj−wTXi. Under this framework, the logistic ordinal regression model has a logistic link function and the proportional hazards model has a log-log link function.
The logistic ordinal regression model is also known as the proportional odds model, because the ratio of corresponding odds for two different samples X1X1 and X2X2 is exp(wT(X1−X2))exp(wT(X1−X2)) and so does not depend on the class jj but only on the difference between the samples X1X1 and X2X2.
Optimization
Model estimation can be posed as an optimization problem. Here, we minimize the loss function for the model, defined as minus the log-likelihood:
L(w,θ)=−n∑i=1log(ϕ(θyi−wTXi)−ϕ(θyi−1−wTXi))L(w,θ)=−∑i=1nlog(ϕ(θyi−wTXi)−ϕ(θyi−1−wTXi))
In this sum all terms are convex on ww, thus the loss function is convex over ww. It might be also jointly convex over ww and θθ, although I haven't checked. I use the function fmin_slsqp
in scipy.optimize
to optimize LLunder the constraint that θθ is a non-decreasing vector. There might be better options, I don't know. If you do know, please leave a comment!.
Using the formula log(ϕ(t))′=(1−ϕ(t))log(ϕ(t))′=(1−ϕ(t)), we can compute the gradient of the loss function as
∇wL(w,θ)=n∑i=1Xi(1−ϕ(θyi−wTXi)−ϕ(θyi−1−wTXi))∇θL(w,θ)=n∑i=1eyi(1−ϕ(θyi−wTXi)−11−exp(θyi−1−θyi))+eyi−1(1−ϕ(θyi−1−wTXi)−11−exp(−(θyi−1−θyi)))∇wL(w,θ)=∑i=1nXi(1−ϕ(θyi−wTXi)−ϕ(θyi−1−wTXi))∇θL(w,θ)=∑i=1neyi(1−ϕ(θyi−wTXi)−11−exp(θyi−1−θyi))+eyi−1(1−ϕ(θyi−1−wTXi)−11−exp(−(θyi−1−θyi)))
where eiei is the iith canonical vector.
Code
I've implemented a Python version of this algorithm using Scipy'soptimize.fmin_slsqp
function. This takes as arguments the loss function, the gradient denoted before and a function that is > 0 when the inequalities on θθ are satisfied.
Code can be found here as part of the minirank package, which is my sandbox for code related to ranking and ordinal regression. At some point I would like to submit it to scikit-learn but right now the I don't know how the code will scale to medium-scale problems, but I suspect not great. On top of that I'm not sure if there is a real demand of these models for scikit-learn and I don't want to bloat the package with unused features.
Performance
I compared the prediction accuracy of this model in the sense of mean absolute error (IPython notebook) on the boston house-prices dataset. To have an ordinal variable, I rounded the values to the closest integer, which gave me a problem of size 506 ×× 13 with 46 different target values. Although not a huge increase in accuracy, this model did give me better results on this particular dataset:
Here, ordinal logistic regression is the best-performing model, followed by a Linear Regression model and a One-versus-All Logistic regression model as implemented in scikit-learn.
python风控评分卡建模和风控常识(博客主亲自录制视频教程)
Logistic Ordinal Regression的更多相关文章
- Logistic/Softmax Regression
辅助函数 牛顿法介绍 %% Logistic Regression close all clear %%load data x = load('ex4x.dat'); y = load('ex4y.d ...
- LOGIT REGRESSION
Version info: Code for this page was tested in SPSS 20. Logistic regression, also called a logit mod ...
- spss
编辑 SPSS(Statistical Product and Service Solutions),“统计产品与服务解决方案”软件.最初软件全称为“社会科学统计软件包” (SolutionsStat ...
- 2016CVPR论文集
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...
- HAWQ + MADlib 玩转数据挖掘之(一)——安装
一.MADlib简介 MADlib是Pivotal公司与伯克利大学合作的一个开源机器学习库,提供了精确的数据并行实现.统计和机器学习方法对结构化和非结构化数据进行分析,主要目的是扩展数据库的分析能力, ...
- 用SQL玩转数据挖掘之MADlib(一)——安装
一.MADlib简介 MADlib是Pivotal公司与伯克利大学合作的一个开源机器学习库,提供了精确的数据并行实现.统计和机器学习方法对结构化和非结构化数据进行分析,主要目的是扩展数据库的分析能力, ...
- CVPR2016 Paper list
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...
- SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类
https://www.zhihu.com/topic/19582125/top-answershttps://wenku.baidu.com/search?word=spss&ie=utf- ...
- [Machine Learning] Learning to rank算法简介
声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...
随机推荐
- Aspose.words Java基于模板生成word之纯文本内容
一,创建word模板 1.新建一个word文档 2.分别给四个参数设置域 (1)将鼠标置于想要设置域的地方 (2)设置域名 (3)设置好之后如下图所示 二,项目 1,引入maven依赖 <dep ...
- HDU 4568 Hunter 最短路+TSP
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 Hunter Time Limit: 2000/1000 MS (Java/Others)Me ...
- 【动态规划】POJ-2229
一.题目 Description Farmer John commanded his cows to search for different sets of numbers that sum to ...
- /etc/tolmcat/Server.xml 实例说明
# 这是service类 <Service name="Catalina"> # 这是http连接器,响应用户请求 <Connector port=&qu ...
- Sysprep错误一则
准备搭建一台基于Windows2008的域控,通过ISO文件装完系统后,照例使用Windows Update打全了补丁.同时,考虑到经常使用Powershell,所以手动再装上了PS5.1 .因为准备 ...
- linux 进程guanl管理的常用几个命令
执行中的程序在称作进程.当程序以可执行文件存放在存储中,并且运行的时候,每个进程会被动态得分配系统资源.内存.安全属性和与之相关的状态.可以有多个进程关联到同一个程序,并同时执行不会互相干扰.操作系统 ...
- nginx通过配置empty_gif解决请求favicon 404的问题
背景介绍 因为一些浏览器在访问网站时会默认去请求网站的favicon,但是我的网站(Tengine)上并没有这些icon图片,因此在访问日志里会出现大量的404错误,会触发一些没必要日志告警.我们可以 ...
- CF992C Nastya and a Wardrobe
我是题面 题意很清晰,这种题,我们当然还是有两种方法来做啦 方法一:找规律 读完题我们来看样例,通过样例一已我们大概可以看出,答案或许是\(n*2^{k+1}\) 肯定不能这么简单对吧,那就来看样例二 ...
- 【BZOJ1048】分割矩阵(记忆化搜索,动态规划)
[BZOJ1048]分割矩阵(记忆化搜索,动态规划) 题面 BZOJ 洛谷 题解 一个很简单的\(dp\),写成记忆化搜索的形式的挺不错的. #include<iostream> #inc ...
- 【CF835D】Palindromic characteristics 加强版 解题报告
[CF835D]Palindromic characteristics 加强版 Description 给你一个串,让你求出\(k\)阶回文子串有多少个.\(k\)从\(1\)到\(n\). \(k\ ...