本特征提取:
将文本数据转化成特征向量的过程
比较常用的文本特征表示法为词袋法
词袋法:
不考虑词语出现的顺序,每个出现过的词汇单独作为一列特征
这些不重复的特征词汇集合为词表
每一个文本都可以在很长的词表上统计出一个很多列的特征向量
如果每个文本都出现的词汇,一般被标记为 停用词 不计入特征向量 主要有两个api来实现 CountVectorizer 和 TfidfVectorizer
CountVectorizer:
只考虑词汇在文本中出现的频率
TfidfVectorizer:
除了考量某词汇在文本出现的频率,还关注包含这个词汇的所有文本的数量
能够削减高频没有意义的词汇出现带来的影响, 挖掘更有意义的特征 相比之下,文本条目越多,Tfid的效果会越显著 下面对两种提取特征的方法,分别设置停用词和不停用,
使用朴素贝叶斯进行分类预测,比较评估效果

python3 学习api的使用

源代码git: https://github.com/linyi0604/MachineLearning

代码:

 from sklearn.datasets import  fetch_20newsgroups
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report '''
文本特征提取:
将文本数据转化成特征向量的过程
比较常用的文本特征表示法为词袋法
词袋法:
不考虑词语出现的顺序,每个出现过的词汇单独作为一列特征
这些不重复的特征词汇集合为词表
每一个文本都可以在很长的词表上统计出一个很多列的特征向量
如果每个文本都出现的词汇,一般被标记为 停用词 不计入特征向量 主要有两个api来实现 CountVectorizer 和 TfidfVectorizer
CountVectorizer:
只考虑词汇在文本中出现的频率
TfidfVectorizer:
除了考量某词汇在文本出现的频率,还关注包含这个词汇的所有文本的数量
能够削减高频没有意义的词汇出现带来的影响, 挖掘更有意义的特征 相比之下,文本条目越多,Tfid的效果会越显著 下面对两种提取特征的方法,分别设置停用词和不停用,
使用朴素贝叶斯进行分类预测,比较评估效果 ''' # 1 下载新闻数据
news = fetch_20newsgroups(subset="all") # 2 分割训练数据和测试数据
x_train, x_test, y_train, y_test = train_test_split(news.data,
news.target,
test_size=0.25,
random_state=33) # 3.1 采用普通统计CountVectorizer提取特征向量
# 默认配置不去除停用词
count_vec = CountVectorizer()
x_count_train = count_vec.fit_transform(x_train)
x_count_test = count_vec.transform(x_test)
# 去除停用词
count_stop_vec = CountVectorizer(analyzer='word', stop_words='english')
x_count_stop_train = count_stop_vec.fit_transform(x_train)
x_count_stop_test = count_stop_vec.transform(x_test) # 3.2 采用TfidfVectorizer提取文本特征向量
# 默认配置不去除停用词
tfid_vec = TfidfVectorizer()
x_tfid_train = tfid_vec.fit_transform(x_train)
x_tfid_test = tfid_vec.transform(x_test)
# 去除停用词
tfid_stop_vec = TfidfVectorizer(analyzer='word', stop_words='english')
x_tfid_stop_train = tfid_stop_vec.fit_transform(x_train)
x_tfid_stop_test = tfid_stop_vec.transform(x_test) # 4 使用朴素贝叶斯分类器 分别对两种提取出来的特征值进行学习和预测
# 对普通通统计CountVectorizer提取特征向量 学习和预测
mnb_count = MultinomialNB()
mnb_count.fit(x_count_train, y_train) # 学习
mnb_count_y_predict = mnb_count.predict(x_count_test) # 预测
# 去除停用词
mnb_count_stop = MultinomialNB()
mnb_count_stop.fit(x_count_stop_train, y_train) # 学习
mnb_count_stop_y_predict = mnb_count_stop.predict(x_count_stop_test) # 预测 # 对TfidfVectorizer提取文本特征向量 学习和预测
mnb_tfid = MultinomialNB()
mnb_tfid.fit(x_tfid_train, y_train)
mnb_tfid_y_predict = mnb_tfid.predict(x_tfid_test)
# 去除停用词
mnb_tfid_stop = MultinomialNB()
mnb_tfid_stop.fit(x_tfid_stop_train, y_train) # 学习
mnb_tfid_stop_y_predict = mnb_tfid_stop.predict(x_tfid_stop_test) # 预测 # 5 模型评估
# 对普通统计CountVectorizer提取的特征学习模型进行评估
print("未去除停用词的CountVectorizer提取的特征学习模型准确率:", mnb_count.score(x_count_test, y_test))
print("更加详细的评估指标:\n", classification_report(mnb_count_y_predict, y_test))
print("去除停用词的CountVectorizer提取的特征学习模型准确率:", mnb_count_stop.score(x_count_stop_test, y_test))
print("更加详细的评估指标:\n", classification_report(mnb_count_stop_y_predict, y_test)) # 对TfidVectorizer提取的特征学习模型进行评估
print("TfidVectorizer提取的特征学习模型准确率:", mnb_tfid.score(x_tfid_test, y_test))
print("更加详细的评估指标:\n", classification_report(mnb_tfid_y_predict, y_test))
print("去除停用词的TfidVectorizer提取的特征学习模型准确率:", mnb_tfid_stop.score(x_tfid_stop_test, y_test))
print("更加详细的评估指标:\n", classification_report(mnb_tfid_stop_y_predict, y_test)) '''
未去除停用词的CountVectorizer提取的特征学习模型准确率: 0.8397707979626485
更加详细的评估指标:
precision recall f1-score support 0 0.86 0.86 0.86 201
1 0.86 0.59 0.70 365
2 0.10 0.89 0.17 27
3 0.88 0.60 0.72 350
4 0.78 0.93 0.85 204
5 0.84 0.82 0.83 271
6 0.70 0.91 0.79 197
7 0.89 0.89 0.89 239
8 0.92 0.98 0.95 257
9 0.91 0.98 0.95 233
10 0.99 0.93 0.96 248
11 0.98 0.86 0.91 272
12 0.88 0.85 0.86 259
13 0.94 0.92 0.93 252
14 0.96 0.89 0.92 239
15 0.96 0.78 0.86 285
16 0.96 0.88 0.92 272
17 0.98 0.90 0.94 252
18 0.89 0.79 0.84 214
19 0.44 0.93 0.60 75 avg / total 0.89 0.84 0.86 4712 去除停用词的CountVectorizer提取的特征学习模型准确率: 0.8637521222410866
更加详细的评估指标:
precision recall f1-score support 0 0.89 0.85 0.87 210
1 0.88 0.62 0.73 352
2 0.22 0.93 0.36 59
3 0.88 0.62 0.73 341
4 0.85 0.93 0.89 222
5 0.85 0.82 0.84 273
6 0.79 0.90 0.84 226
7 0.91 0.91 0.91 239
8 0.94 0.98 0.96 264
9 0.92 0.98 0.95 236
10 0.99 0.92 0.95 251
11 0.97 0.91 0.93 254
12 0.89 0.87 0.88 254
13 0.95 0.94 0.95 248
14 0.96 0.91 0.93 233
15 0.94 0.87 0.90 250
16 0.96 0.89 0.93 271
17 0.98 0.95 0.97 238
18 0.90 0.84 0.87 200
19 0.53 0.91 0.67 91 avg / total 0.90 0.86 0.87 4712 TfidVectorizer提取的特征学习模型准确率: 0.8463497453310697
更加详细的评估指标:
precision recall f1-score support 0 0.67 0.84 0.75 160
1 0.74 0.85 0.79 218
2 0.85 0.82 0.83 256
3 0.88 0.76 0.82 275
4 0.84 0.94 0.89 217
5 0.84 0.96 0.89 229
6 0.69 0.93 0.79 192
7 0.92 0.84 0.88 259
8 0.92 0.98 0.95 259
9 0.91 0.96 0.94 238
10 0.99 0.88 0.93 264
11 0.98 0.73 0.83 321
12 0.83 0.91 0.87 226
13 0.92 0.97 0.95 231
14 0.96 0.89 0.93 239
15 0.97 0.51 0.67 443
16 0.96 0.83 0.89 293
17 0.97 0.92 0.95 245
18 0.62 0.98 0.76 119
19 0.16 0.93 0.28 28 avg / total 0.88 0.85 0.85 4712 去除停用词的TfidVectorizer提取的特征学习模型准确率: 0.8826400679117148
更加详细的评估指标:
precision recall f1-score support 0 0.81 0.86 0.83 190
1 0.81 0.85 0.83 238
2 0.87 0.84 0.86 257
3 0.88 0.78 0.83 269
4 0.90 0.92 0.91 235
5 0.88 0.95 0.91 243
6 0.80 0.90 0.85 230
7 0.92 0.89 0.90 244
8 0.94 0.98 0.96 265
9 0.93 0.97 0.95 242
10 0.99 0.88 0.93 264
11 0.98 0.85 0.91 273
12 0.86 0.93 0.89 231
13 0.93 0.96 0.95 237
14 0.97 0.90 0.93 239
15 0.96 0.70 0.81 320
16 0.98 0.84 0.90 294
17 0.99 0.92 0.95 248
18 0.74 0.97 0.84 145
19 0.29 0.96 0.45 48 avg / total 0.90 0.88 0.89 4712
'''

机器学习之路:python 文本特征提取 CountVectorizer, TfidfVectorizer的更多相关文章

  1. python 文本特征提取 CountVectorizer, TfidfVectorizer

    1. TF-IDF概述 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与文本挖掘的常用加权技术.TF-IDF是一种统计方法,用以评 ...

  2. python —— 文本特征提取 CountVectorize

    CountVectorize 来自:python学习 文本特征提取(二) CountVectorizer TfidfVectorizer 中文处理 - CSDN博客 https://blog.csdn ...

  3. 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测

    使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...

  4. 机器学习之路--Python

    常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(cla ...

  5. 机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价

    python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import ...

  6. 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价

    python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...

  7. 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存

    使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...

  8. 使用sklearn做文本特征提取

    提取文本的特征,把文本用特征表示出来,是文本分类的前提,使用sklearn做文本的特征提取,需要导入TfidfVectorizer模块. from sklearn.feature_extraction ...

  9. 机器学习之路: python nltk 文本特征提取

    git: https://github.com/linyi0604/MachineLearning 分别使用词袋法和nltk自然预言处理包提供的文本特征提取 from sklearn.feature_ ...

随机推荐

  1. 【leetcode 简单】 第八十六题 有效的完全平方数

    给定一个正整数 num,编写一个函数,如果 num 是一个完全平方数,则返回 True,否则返回 False. 注意:不要使用任何内置的库函数,如  sqrt. 示例 1: 输入: 16 输出: Tr ...

  2. 【译】SSH隧道:本地和远程端口转发

    本文是:SSH Tunnel - Local and Remote Port Forwarding Explained With Examples 的译文 有两种方法可以创建SSH隧道,本地和远程端口 ...

  3. asp.net 调用post方法并获取返回值

    /// <summary>        /// http协议 post数据 接受返回结果        /// </summary>        /// <param ...

  4. hdu 1004 Let the Balloon Rise(字典树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1004 Let the Balloon Rise Time Limit: 2000/1000 MS (J ...

  5. [转]程序进行性能分析工具gprof使用入门

    性能分析工具 软件的性能是软件质量的重要考察点,不论是在线服务程序还是离线程序,甚至是终端应用,性能都是用户体验的关键.这里说的性能重大的范畴来讲包括了性能和稳定性两个方面,我们在做软件测试的时候也是 ...

  6. java所搜引擎slor学习笔记(一)

    java搜索引擎有很多,比较熟悉的就是slor和lucene. luncene: 概念:全文检索是计算机程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置.当用户查 ...

  7. JS合并单元格

    在Web中经常需要合并单元格,例如对于下面一个表格: <!DOCTYPE html> <html> <head> <meta charset="UT ...

  8. ARC073E Ball Coloring

    Problem AtCoder Solution 把点映射至二维平面,问题就变成了给定 \(n\) 个点,可以把点对 \(y=x\) 对称,求覆盖所有点的最小矩形面积. 可以先把所有点放到 \(y=x ...

  9. Python开发环境(1):Eclipse+PyDev插件

    电脑:小米笔记本电脑Pro 15.6寸(i5-8250U),操作系统:Windows 10,JDK版本:1.8.0_152(环境变量已配置) Step 1.下载Eclipse 根据我的CPU型号,选择 ...

  10. Python全局变量和局部变量

    全局变量和局部变量 定义在函数内部的变量拥有一个局部作用域,定义在函数外的拥有全局作用域. 局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问.调用函数时,所有在函数内声明的变量 ...