ZOJ 3537 Cake(凸包+区间DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537
题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形(凸包)则不能切,直接输出"I can't cut."
切多边形时每次只能在顶点和顶点间切,每切一次的花费为 cost(i, j) = |xi + xj| * |yi + yj| % p。
问把多边形切成最多个不相交三角形的最小代价是多少。
解题思路:先求出凸包,接着可以用区间DP解决,设dp[i][j]为以i为起点,j为终点的凸包被切成三角形的最小花费。
那么可以得到状态转移方程:dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j])。
不懂的可以看下图(非原创):

代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int N=;
const double eps = 1e-; int n,mod;
int dp[N][N],cost[N][N]; struct P
{
double x, y;
P(double x=, double y=):x(x), y(y) {}
double add(double a, double b){
if(fabs(a+b)<eps*(fabs(a)+fabs(b))) return ;
return a+b;
}
P operator + (P p){
return P(add(x, p.x), add(y, p.y));
}
P operator - (P p){
return P(add(x, -p.x), add(y, -p.y));
}
P operator *(double d){
return P(x*d, y*d);
}
double dot(P p){ //点积
return add(x*p.x, y*p.y);
}
double det(P p){ //差积
return add(x*p.y, -y*p.x);
}
}ps[N]; double dist(P a, P b){
return sqrt((b-a).dot(b-a));
} bool cmp_x(const P& p, const P& q){
if(p.x!=q.x) return p.x < q.x;
return p.y < q.y;
} vector<P> convex_hull(P *ps, int n){
sort(ps,ps+n,cmp_x);
int k = ; //凸包顶点数
vector<P> qs(n*);
//构造凸包的下侧
for(int i=; i<n; i++)
{
while(k> && (qs[k-]-qs[k-]).det(ps[i]-qs[k-])<=) k--;
qs[k++] = ps[i];
}
//构造凸包的上侧
for(int i=n-,t=k; i>=; i--)
{
while(k>t && (qs[k-]-qs[k-]).det(ps[i]-qs[k-])<=) k--;
qs[k++] = ps[i];
}
qs.resize(k-);
return qs;
} int getcost(P p1,P p2){
return abs((int)p1.x+(int)p2.x)*abs((int)p1.y+(int)p2.y)%mod;
} int main(){
while(~scanf("%d%d",&n,&mod)){
for(int i=;i<n;i++){
scanf("%lf%lf",&ps[i].x,&ps[i].y);
}
vector<P>tp;
tp=convex_hull(ps,n);
if(tp.size()<n){
puts("I can't cut.");
continue;
}
//注意,用获得的凸包做DP,即使用tp做DP,保证凸包上的点的顺序
memset(cost,,sizeof(cost));
memset(dp,,sizeof(dp));
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
cost[i][j]=getcost(tp[i],tp[j]);
}
}
for(int len=;len<n;len++){
for(int i=;i+len<n;i++){
int j=i+len;
dp[i][j]=INF;
for(int k=i+;k<=j-;k++){
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
}
}
}
printf("%d\n",dp[][n-]);
}
return ;
}
ZOJ 3537 Cake(凸包+区间DP)的更多相关文章
- ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)
Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut t ...
- ZOJ 3537 Cake (区间DP,三角形剖分)
题意: 给出平面直角坐标系上的n个点的坐标,表示一个多边形蛋糕,先判断是否是凸多边形,若否,输出"I can't cut.".若是,则对这个蛋糕进行3角形剖分,切n-3次变成n-2 ...
- ZOJ 3537 (凸包 + 区间DP)(UNFINISHED)
#include "Head.cpp" const int N = 10007; int n, m; struct Point{ int x,y; bool operator &l ...
- ZOJ 3537 Cake(凸包判定+区间DP)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...
- zoj 3537 Cake 区间DP (好题)
题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[ ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- zoj 3537 Cake (凸包确定+间隔dp)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-sha ...
- ZOJ 3537 Cake
区间DP. 首先求凸包判断是否为凸多边形. 如果是凸多边形:假设现在要切割连续的一段点,最外面两个一定是要切一刀的,内部怎么切达到最优解就是求子区间最优解,因此可以区间DP. #include< ...
- [ZOJ]3541 Last Puzzle (区间DP)
ZOJ 3541 题目大意:有n个按钮,第i个按钮在按下ti 时间后回自动弹起,每个开关的位置是di,问什么策略按开关可以使所有的开关同时处于按下状态 Description There is one ...
随机推荐
- 读论文《BP改进算法在哮喘症状-证型分类预测中的应用》
总结: 一.研究内容 本文研究了CAL-BP(基于隐层的竞争学习与学习率的自适应的改进BP算法)在症状证型分类预测中的应用. 二.算法思想 1.隐层计算完各节点的误差后,对有最大误差的节点的权值进行正 ...
- bzoj 4919 [Lydsy1706月赛]大根堆 set启发式合并+LIS
4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 599 Solved: 260[Submit][Stat ...
- IL指令集
声明: 1.本指令集搜集自网上各个论坛帖子,欢迎补充 IL指令集 名称 说明 Add 将两个值相加并将结果推送到计算堆栈上. Add.Ovf 将两个整数相加,执行溢出检查,并且将结果推 ...
- R语言颜色综合运用与色彩方案共享
R语言颜色综合运用与色彩方案共享 小魔方 EasyCharts 2016-11-21 今天这篇主要讲解R语言颜色综合运用,主要跟大家介绍如何提取那些专业色彩包中的颜色搭配用于在基础绘图系统和高级绘图系 ...
- 触发器的SQL语法
create trigger triggerName after/before insert/update/delete on 表名 for each row #这句话在mysql是固定的 begin ...
- python——type()、metaclass元类和精简ORM框架
1.type()函数 if __name__ == '__main__': h = hello() h.hello() print(type(hello)) print(type(h)) Hello, ...
- Android的taskAffinity对四种launchMode的影响
在Android系统中,一个application的所有Activity默认有一个相同的affinity(亲密关系,相似之处).也就是说同一个应用程序的的所有Activity倾向于属于同一个task. ...
- HTTP协议(2)-------- 网络编程
1. HTTP请求格式 做过Socket编程的人都知道,当我们设计一个通信协议时,“消息头/消息体”的分割方式是很常用的,消息头告诉对方这个消息是干什么的,消息体告诉对方怎么干.HTTP协议传输的消息 ...
- python安装pymssql
安装pymssql pip install pymssql 关于python安装pymssql报错export PYMSSQL_BUILD_WITH_BUNDLED_FREETDS=1 然后再 pip ...
- Chrome浏览器F12讲解
Chrome浏览器相对于其他的浏览器而言,DevTools(开发者工具)非常强大.这节课将为大家介绍怎么利用Chrome浏览器的开发者工具进行HTTP请求分析 Chrome浏览器讲解 Chrome 开 ...