题意:

秦朝有n个城市,需要修路让每个城市都互相连通,现在可以免费修一条路,秦始皇希望他除了这条免费修的路外所需修的路的总和B最短,同时这条免费的路连接的人口之和A尽可能大,求最大的A/B是多少,城市之间的长度为欧几里得距离

思路:

这题是一个典型的最小生成树的题目。首先应该先求出最小生成树,其权值之和为W,然后再根据MST的回路性质,算出每一条路径对应的最大边权值,再进行遍历,求出最大的A/B即可

代码有参考这里

AC代码:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <queue>
#include <map>
#include <vector>
#include <algorithm>
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
#define inf 0x3f3f3f3f
typedef long long ll;
const int maxn=; struct Edge
{
int a,b;
double d;
bool operator < (const Edge& rhs) const
{
return d < rhs.d;
}
}; int x[maxn];
int y[maxn];
int p[maxn];
int n;
Edge e[maxn*maxn]; //G是与该节点相连的节点的编号,C是相应的cost
vector<int> G[maxn];
vector<double> C[maxn]; int par[maxn]; void init(){
for(int i=;i<n;i++){
par[i]=i;
G[i].clear();
C[i].clear();
}
} //int find(int x){return x==find(x)?x:par[x]=find(par[x]);} int find(int x)
{
if(x!=par[x])
par[x] = find(par[x]);
return par[x];
} bool unite(int x,int y){
x=find(x);
y=find(y);
if(x==y){
return false;
}else{
par[x]=y;
return true;
}
} double mst(){
int cnt=;
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
e[cnt].a=i;
e[cnt].b=j;
e[cnt].d=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
cnt++;
}
}
// cout<<"ss"<<endl;
sort(e,e+cnt);
init();
for(int i=; i<n; i++)
{
par[i] = i;
G[i].clear();
C[i].clear();
}
double ans=;
int cnt2=;
// cout<<"aa"<<endl;
for(int i=;i<cnt;i++){
if(unite(e[i].a,e[i].b)){
G[e[i].a].push_back(e[i].b);
C[e[i].a].push_back(e[i].d);
G[e[i].b].push_back(e[i].a);
C[e[i].b].push_back(e[i].d);
ans+=e[i].d;
cnt2++;
if(cnt2==n-) break;
}
} // cout<<ans<<endl;
return ans;
} double costs[maxn][maxn];
vector<int> nodes; //u是现在在搜索的节点,fa是u的父节点(从哪来),facost是之前来的那条路的cost
void dfs(int u, int fa, double facost)
{
for(int i = ; i < nodes.size(); i++)
{
int x = nodes[i];
costs[u][x] = costs[x][u] = max(costs[x][fa], facost);
}
nodes.push_back(u);
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(v != fa)
dfs(v, u, C[u][i]);
}
} int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d%d%d",&x[i],&y[i],&p[i]);
}
// cout<<"hh"<<endl;
double total=mst();
memset(costs,,sizeof(costs));
nodes.clear();
dfs(, -, ); double ans = -; for(int i=; i<n; i++)
{
for(int j=i+; j<n; j++)
{
ans = max(ans,(p[i]+p[j])/(total-costs[i][j]));
}
}
printf("%.2lf\n",ans); }
return ;
}

LA5713 秦始皇修路 (mst)的更多相关文章

  1. LA 5713 秦始皇修路 MST

    题目链接:http://vjudge.net/contest/144221#problem/A 题意: 秦朝有n个城市,需要修建一些道路使得任意两个城市之间都可以连通.道士徐福声称他可以用法术修路,不 ...

  2. hdu4081 秦始皇修路(次小生成树)

    题目ID:hdu4081   秦始皇修路 题目链接:点击打开链接 题目大意:给你若干个坐标,每个坐标表示一个城市,每个城市有若干个人,现在要修路,即建一个生成树,然后有一个魔法师可以免费造路(不消耗人 ...

  3. UVALive 5713 Qin Shi Huang's National Road System秦始皇修路(MST,最小瓶颈路)

    题意: 秦始皇要在n个城市之间修路,而徐福声可以用法术位秦始皇免费修1条路,每个城市还有人口数,现要求徐福声所修之路的两城市的人口数之和A尽量大,而使n个城市互通需要修的路长B尽量短,从而使得A/B最 ...

  4. LA 5713 秦始皇修路

    https://vjudge.net/problem/UVALive-5713 题意: 秦朝有n个城市,需要修建一些道路使得任意两个城市之间都可以连通.道士徐福声称他可以用法术修路,不花钱,也不用劳动 ...

  5. 【最小生成树】UVA1494Qin Shi Huang's National Road System秦始皇修路

    Description During the Warring States Period of ancient China(476 BC to 221 BC), there were seven ki ...

  6. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  7. UVALive - 5713 最小生成树

    题意: 秦始皇修路,已知n个城市的坐标以及该城市的人口数,修路的费用是两个城市之间的欧几里得距离,其中可以有一条路不用花费代价但是要求这条路连接的两个城市的人口之和A/B尽量大,其中B是修路的总费用. ...

  8. LA5713 Qin Shi Huang's National Road System

    题目大意:秦始皇要在n个城市之间修筑一条道路使得任意两个城市均可连通.有个道士可以用法力帮忙修一条路.秦始皇希望其他的道路总长B最短且用法术连接的两个城市的人口之和A尽量大,因此下令寻找一个A / B ...

  9. 【LA 5713 】 Qin Shi Huang's National Road System (MST)

    [题意] 秦始皇要在n个城市之间修路,而徐福声可以用法术位秦始皇免费修1条路,每个城市还有人口数,现要求徐福声所修之路的两城市的人口数之和A尽量大,而使n个城市互通需要修的路长B尽量短,从而使得A/B ...

随机推荐

  1. POJ Georgia and Bob-----阶梯博弈变形。

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6622   Accepted: 1932 D ...

  2. 通过读写文本文件小结“关于python处理中文编码的问题”

    一.引言 无论学习什么程序语言,字符串这种数据类型总是着有非常重要.然而最近在学习python这门语言,想要显示中文,总是出现各种乱码.于是在网上查了很多资料,各说纷纭,我也尝试了许多的方法,有时候可 ...

  3. jQuery基础(常用插件 表单验证,图片放大镜,自定义对象级,jQuery UI,面板折叠)

    1.表单验证插件——validate   该插件自带包含必填.数字.URL在内容的验证规则,即时显示异常信息,此外,还允许自定义验证规则,插件调用方法如下:   $(form).validate({o ...

  4. WDCP上传SSL证书

    1.在线申请SSL证书 2.网站管理>SSL证书上传 3.将key文件直接上传,cert文件内容复制到crt文件中,再上传 4.开启https 注意:同一个域名下解析的若干域名,只能走主域名的证 ...

  5. Spring Boot—14JdbcTemplate

    pom.xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...

  6. Flutter的教程:ListView

    本文学习一下列表widget,是最常见的需求 在Flutter中,用ListView来显示列表项,支持垂直和水平方向展示,通过一个属性我们就可以控制其方向 1.水平的列表 2.垂直的列表 3.数据量非 ...

  7. 如何使用Nginx和uWSGI或Gunicorn在Ubuntu上部署Flask Web应用

    你好!欢迎阅读我的博文,你可以跳转到我的个人博客网站,会有更好的排版效果和功能. 此外,本篇博文为本人Pushy原创,如需转载请注明出处:https://pushy.site/posts/151981 ...

  8. oracle sql 命令类别

    1.数据定义语言 DDL 有 create alter drop2.数据操纵语言 DML insert select delete update3.事务控制语言 TCL commit savepoin ...

  9. 福大软工1816:Beta(5/7)

    Beta 冲刺 (5/7) 队名:第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务 文字/口头描述 组织会议 确定统一界面wxpy.db之 ...

  10. simple Terracotta session 同步

    部署前提: 配置好java环境和已有tomcat实例. 地址1:http://vdisk.weibo.com/s/dzUJr1vLcAWHl 地址2:http://code.taobao.org/p/ ...