题意:

秦朝有n个城市,需要修路让每个城市都互相连通,现在可以免费修一条路,秦始皇希望他除了这条免费修的路外所需修的路的总和B最短,同时这条免费的路连接的人口之和A尽可能大,求最大的A/B是多少,城市之间的长度为欧几里得距离

思路:

这题是一个典型的最小生成树的题目。首先应该先求出最小生成树,其权值之和为W,然后再根据MST的回路性质,算出每一条路径对应的最大边权值,再进行遍历,求出最大的A/B即可

代码有参考这里

AC代码:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <queue>
#include <map>
#include <vector>
#include <algorithm>
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
#define inf 0x3f3f3f3f
typedef long long ll;
const int maxn=; struct Edge
{
int a,b;
double d;
bool operator < (const Edge& rhs) const
{
return d < rhs.d;
}
}; int x[maxn];
int y[maxn];
int p[maxn];
int n;
Edge e[maxn*maxn]; //G是与该节点相连的节点的编号,C是相应的cost
vector<int> G[maxn];
vector<double> C[maxn]; int par[maxn]; void init(){
for(int i=;i<n;i++){
par[i]=i;
G[i].clear();
C[i].clear();
}
} //int find(int x){return x==find(x)?x:par[x]=find(par[x]);} int find(int x)
{
if(x!=par[x])
par[x] = find(par[x]);
return par[x];
} bool unite(int x,int y){
x=find(x);
y=find(y);
if(x==y){
return false;
}else{
par[x]=y;
return true;
}
} double mst(){
int cnt=;
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
e[cnt].a=i;
e[cnt].b=j;
e[cnt].d=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
cnt++;
}
}
// cout<<"ss"<<endl;
sort(e,e+cnt);
init();
for(int i=; i<n; i++)
{
par[i] = i;
G[i].clear();
C[i].clear();
}
double ans=;
int cnt2=;
// cout<<"aa"<<endl;
for(int i=;i<cnt;i++){
if(unite(e[i].a,e[i].b)){
G[e[i].a].push_back(e[i].b);
C[e[i].a].push_back(e[i].d);
G[e[i].b].push_back(e[i].a);
C[e[i].b].push_back(e[i].d);
ans+=e[i].d;
cnt2++;
if(cnt2==n-) break;
}
} // cout<<ans<<endl;
return ans;
} double costs[maxn][maxn];
vector<int> nodes; //u是现在在搜索的节点,fa是u的父节点(从哪来),facost是之前来的那条路的cost
void dfs(int u, int fa, double facost)
{
for(int i = ; i < nodes.size(); i++)
{
int x = nodes[i];
costs[u][x] = costs[x][u] = max(costs[x][fa], facost);
}
nodes.push_back(u);
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(v != fa)
dfs(v, u, C[u][i]);
}
} int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d%d%d",&x[i],&y[i],&p[i]);
}
// cout<<"hh"<<endl;
double total=mst();
memset(costs,,sizeof(costs));
nodes.clear();
dfs(, -, ); double ans = -; for(int i=; i<n; i++)
{
for(int j=i+; j<n; j++)
{
ans = max(ans,(p[i]+p[j])/(total-costs[i][j]));
}
}
printf("%.2lf\n",ans); }
return ;
}

LA5713 秦始皇修路 (mst)的更多相关文章

  1. LA 5713 秦始皇修路 MST

    题目链接:http://vjudge.net/contest/144221#problem/A 题意: 秦朝有n个城市,需要修建一些道路使得任意两个城市之间都可以连通.道士徐福声称他可以用法术修路,不 ...

  2. hdu4081 秦始皇修路(次小生成树)

    题目ID:hdu4081   秦始皇修路 题目链接:点击打开链接 题目大意:给你若干个坐标,每个坐标表示一个城市,每个城市有若干个人,现在要修路,即建一个生成树,然后有一个魔法师可以免费造路(不消耗人 ...

  3. UVALive 5713 Qin Shi Huang's National Road System秦始皇修路(MST,最小瓶颈路)

    题意: 秦始皇要在n个城市之间修路,而徐福声可以用法术位秦始皇免费修1条路,每个城市还有人口数,现要求徐福声所修之路的两城市的人口数之和A尽量大,而使n个城市互通需要修的路长B尽量短,从而使得A/B最 ...

  4. LA 5713 秦始皇修路

    https://vjudge.net/problem/UVALive-5713 题意: 秦朝有n个城市,需要修建一些道路使得任意两个城市之间都可以连通.道士徐福声称他可以用法术修路,不花钱,也不用劳动 ...

  5. 【最小生成树】UVA1494Qin Shi Huang's National Road System秦始皇修路

    Description During the Warring States Period of ancient China(476 BC to 221 BC), there were seven ki ...

  6. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  7. UVALive - 5713 最小生成树

    题意: 秦始皇修路,已知n个城市的坐标以及该城市的人口数,修路的费用是两个城市之间的欧几里得距离,其中可以有一条路不用花费代价但是要求这条路连接的两个城市的人口之和A/B尽量大,其中B是修路的总费用. ...

  8. LA5713 Qin Shi Huang's National Road System

    题目大意:秦始皇要在n个城市之间修筑一条道路使得任意两个城市均可连通.有个道士可以用法力帮忙修一条路.秦始皇希望其他的道路总长B最短且用法术连接的两个城市的人口之和A尽量大,因此下令寻找一个A / B ...

  9. 【LA 5713 】 Qin Shi Huang's National Road System (MST)

    [题意] 秦始皇要在n个城市之间修路,而徐福声可以用法术位秦始皇免费修1条路,每个城市还有人口数,现要求徐福声所修之路的两城市的人口数之和A尽量大,而使n个城市互通需要修的路长B尽量短,从而使得A/B ...

随机推荐

  1. 单点登录在asp.net中的简单实现

    系统的基本架构 我们假设一个系统System包含Service客户服务中心.Shop网上购物中心和Office网上办公中心三个独立的网站.Service管理客户的资料,登录和注销过程.不论客户访问Sy ...

  2. Java基于ssm框架的restful应用开发

    Java基于ssm框架的restful应用开发 好几年都没写过java的应用了,这里记录下使用java ssm框架.jwt如何进行rest应用开发,文中会涉及到全局异常拦截处理.jwt校验.token ...

  3. WPF流程图制作系列相关基础二

       我们现在知道 thumb ,可以让用户自行拖动其在 canvas上移动,在这个而基础上 我们可以试着往流程图方向靠近一下. 我们知道,流程图,都是一个一个的流程块,然后用线连起来的,这一个一个的 ...

  4. 修改input被选中的默认样式

    input:focus{    outline: none;     border: 1px solid #fff; } 或者 input[type=text]:focus{   outline: n ...

  5. 用pymysql操作数据库

    import pymysql # 打开数据库连接 connection = pymysql.connect(host='127.0.0.1', user='root', passwd=', db='s ...

  6. 一文告诉你git如何使用

    提供简易教程学习网址 http://www.bootcss.com/p/git-guide/ git add . //提交至缓存 git commit -m '注释' //提交至本地 (git com ...

  7. CSS 媒体查询创建响应式网站

    使用 CSS 媒体查询创建响应式网站  适用于所有屏幕大小的设计 固定宽度的静态网站很快被灵活的响应式设计所取代,该设计可以根据屏幕大小进行上扩和下扩.利用响应式设计,无论您采用什么设备或屏幕来访问网 ...

  8. hello Groovy

    Groovy [rocky@www ~]$ curl -s get.sdkman.io 1. 下载 [rocky@www Downloads]$ wget https://dl.bintray.com ...

  9. [清华集训]Rmq Problem / mex

    题目链接 我们离线处理这些询问 在右端点所在的位置用vector来push_back询问 维护每个数值最后出现的位置p[x] 从左往右扫,边走边回答询问 对于每个询问我们回答第一个p[x]<l的 ...

  10. P/Invoke出现错误 System.NullReferenceException”类型的未经处理的异常在 未知模块。 中发生 未将对象引用设置到对象的实例。

    问题 “System.NullReferenceException”类型的未经处理的异常在 未知模块. 中发生 未将对象引用设置到对象的实例. 解决方案 1.尝试 用管理员身份运行CMD,输入nets ...