UVa 1642 - Magical GCD(数论)
链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4517
题意:
输入一个n(n≤100000)个元素的正整数序列,求一个连续子序列,使得该序列中所有元素的最大公约数与序列长度的乘积最大。
例如,5个元素的序列30, 60, 20, 20, 20的最优解为{60, 20, 20, 20},乘积为gcd(60,20,20,20)*4=80。
分析:
从左到右枚举序列的右边界j,然后快速求出左边界i≤j,使得MGCD(i,j)最大。
其中MGCD(i,j)定义为gcd(a[i],a[i+1],...,a[j])*(j-i+1)。
考虑序列5, 8, 6, 2, 6, 8,当j=5时需要比较i=1, 2, 3, 4, 5时的MGCD(i,j),如下表所示:
i=1,gcd表达式=gcd(5,8,6,2,6),gcd值=1,序列长度=5。
i=2,gcd表达式=gcd(8,6,2,6),gcd值=2,序列长度=4。
i=3,gcd表达式=gcd(6,2,6),gcd值=2,序列长度=3。
i=4,gcd表达式=gcd(2,6),gcd值=2,序列长度=2。
i=5,gcd表达式=gcd(6),gcd值=6,序列长度=1。
从下往上看,gcd表达式里每次多一个元素,有时gcd不变,有时会变小,而且每次变小时一定是变成了它的某个约数。
换句话说,不同的gcd值最多只有logj种!当gcd值相同时,序列长度越大越好,所以可以把表简化一下:
gcd值=1,i=1。
gcd值=2,i=2。
gcd值=6,i=5。
因为表里只有logj个元素,所以可以依次比较每一个i对应的MGCD(i,j),时间复杂度为O(logj)。
下面考虑j从5变成6时,这个表会发生怎样的变化。
首先,上述所有gcd值都要再和a6=8取gcd,然后要加入i=6的项目,gcd值为8。
由于相同的gcd值只需要保留i的最小值,所以i=5被删除,最终得到如下表所示结果。
gcd值=1,i=1。
gcd值=2,i=2。
gcd值=8,i=6。
总时间复杂度为O(nlogn)。
代码:
#include <cstdio>
#include <vector>
using namespace std; typedef long long int LLI;
struct Item {
LLI g;
int p;
}; LLI gcd(LLI a, LLI b) {
return b == ? a : gcd(b, a%b);
} int main() {
int T, n;
LLI v, ans;
scanf("%d", &T);
while(T--) {
ans = ;
vector<Item> vec;
scanf("%d", &n);
for(int t = ; t < n; t++) {
scanf("%lld", &v);
for(int i = ; i < vec.size(); i++) vec[i].g = gcd(vec[i].g, v);
vec.push_back((Item){v,t});
vector<Item> nvec;
for(int i = ; i < vec.size(); i++) {
if(i != && vec[i].g == vec[i-].g) continue;
ans = max(ans, vec[i].g * (t-vec[i].p+));
nvec.push_back(vec[i]);
}
vec = nvec;
}
printf("%lld\n", ans);
}
return ;
}
UVa 1642 - Magical GCD(数论)的更多相关文章
- UVA - 1642 Magical GCD 数学
Magical GCD The Magical GCD of a nonempty sequence of positive integer ...
- UVa 1642 Magical GCD (暴力+数论)
题意:给出一个长度在 100 000 以内的正整数序列,大小不超过 10^ 12.求一个连续子序列,使得在所有的连续子序列中, 它们的GCD值乘以它们的长度最大. 析:暴力枚举右端点,然后在枚举左端点 ...
- uva 1642 Magical GCD
很经典的题目,愣是没做出来.. 题意:给出一个序列,求一子序列,满足其GCD(子序列)* length(子序列)最大. 题解: 类似单调队列的思想,每次将前面所得的最大公约数与当前数进行GCD,若GC ...
- UVA 1642 Magical GCD(经典gcd)
题意:给你n(n<=100000)个正整数,求一个连续子序列使序列的所有元素的最大公约数与个数乘积最大 题解:我们知道一个原理就是对于n+1个数与n个数的最大公约数要么相等,要么减小并且减小至少 ...
- UVA 1642 Magical GCD(gcd的性质,递推)
分析:对于区间[i,j],枚举j. 固定j以后,剩下的要比较M_gcd(k,j) = gcd(ak,...,aj)*(j-k+1)的大小, i≤k≤j. 此时M_gcd(k,j)可以看成一个二元组(g ...
- UVA 10951 - Polynomial GCD(数论)
UVA 10951 - Polynomial GCD 题目链接 题意:给定两个多项式,求多项式的gcd,要求首项次数为1,多项式中的运算都%n,而且n为素数. 思路:和gcd基本一样,仅仅只是传入的是 ...
- Magical GCD UVA 1642 利用约数个数少来优化 给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量的值最大。输出这个最大值。
/** 题目:Magical GCD UVA 1642 链接:https://vjudge.net/problem/UVA-1642 题意:给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量 ...
- uva 10951 - Polynomial GCD(欧几里得)
题目链接:uva 10951 - Polynomial GCD 题目大意:给出n和两个多项式,求两个多项式在全部操作均模n的情况下最大公约数是多少. 解题思路:欧几里得算法,就是为多项式这个数据类型重 ...
- 4052: [Cerc2013]Magical GCD
4052: [Cerc2013]Magical GCD Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 148 Solved: 70[Submit][ ...
随机推荐
- 【转】从msql数据库处理高并发商品超卖
今天王总又给我们上了一课,其实mysql处理高并发,防止库存超卖的问题,在去年的时候,王总已经提过:但是很可惜,即使当时大家都听懂了,但是在现实开发中,还是没这方面的意识.今天就我的一些理解,整理一下 ...
- Storm框架:如何消费RabbitMq消息(代码案例)
1.定义拓扑topology public class MessageTopology { public static void main(String[] args) throws Exceptio ...
- 超详细的HashMap解析(jdk1.8)
目录 一.预备知识 时间复杂度 基本数据结构 基本位运算 二.HashMap实现原理 结构 速度 三.源码分析 基本常量 基本成员变量 构造方法 put方法 remove 四.日常使用注意事项 五.总 ...
- 说说HTML5中label标签的可访问性问题——张鑫旭
一.开篇叨叨 一般稍微有些经验的页面制作人员都知道label标签可以优雅地扩大表单控件元素的点击区域,例如,单纯的单选框点击区域就鼻屎那么大的地方,经常会点不到位置.因此,label标签的使用对于提高 ...
- 解决:在php配置文件路径下,添加php.ini之后,测试页面无法显示
安装完php之后,通常情况下,会在网站目录下创建一个.php的文件,来查看php安装过程中的参数配置,脚本的内容很简单: <? phpinfo(); ?> 通常情况下,如果能顺利安装下来不 ...
- 自己编写jQuery插件 之 无缝滚动
一. 效果图 二. Html骨架结构 <div class="box"> <ul> <li>1</li> <li>2&l ...
- EJB JBOSS的安装
下载地址:http://www.jboss.org/jbossas/downloads 下载JBoss 4.2.3-->解压 启动:bin-->run.bat 管理后台:www.local ...
- org.springframework.data.redis.cache.RedisCacheManager
org.springframework.data.redis.cache.RedisCacheManager
- jdk下载及安装
下载下载 jdk 下载 java se 版本的即可. web 开发前不需要像安装 java se 一样安装java ee,只要在项目中添加 java ee 的jar 包就可以了,里面大多是接口和抽象类 ...
- Nginx 配置多站点vhost
假设你想在Linux Nginx中用不同的域名访问不同的目录,这时就要配置多个vhost,具体配置如下,假设网站根目录设定在/var/www/ 1.在/var/www/下新建两个目录 /var/www ...