扩展中国剩余定理(扩展CRT)详解
今天在$xsy$上翻题翻到了一道扩展CRT的题,就顺便重温了下(扩展CRT模板也在里面)
中国剩余定理是用于求一个最小的$x$,满足$x\equiv c_i \pmod{m_i}$。
正常的$CRT$有一个微小的要求,就是$\forall i,j (m_i,m_j)=1$。
在某些情况下,这个式子无法被满足,这个时候就要用扩展$CRT$来求解了。
我们先假设我们只有两条方程要被求解,它们分别是:
$\begin{cases} x\equiv c_1 \pmod{m_1}\\x\equiv c_2 \pmod{m_2}\end{cases}$
我们考虑将同余去掉,就变成了:
$\begin{cases} x= c_1+m_1k_1\\x= c_2+m_2k_2\end{cases}$
联立一波,得:
$c_1+m_1k_1=c_2+m_2k_2$
$m_1k_1=(c_2-c_1)+m_2k_2$
若该方程存在解,则有$(m1,m2)|(c_2-c_1)$,否则无解
下面令$d=(m1,m2)$。
我们对等式两边全部除以$d$,得:
$\dfrac{m_1}{d}k_1=\dfrac{c_2-c_1}{d}+\dfrac{m_2}{d}k_2$
经过简单变式,得:
$\dfrac{m_1}{d}k_1\equiv \dfrac{c_2-c_1}{d} \pmod{\dfrac{m_2}{d}}$
没错,我们成功消掉了$k_2$
我们将$\dfrac{m_1}{d}$移项到等式右侧,得:
$k_1 \equiv inv(\dfrac{m1}{d},\dfrac{m_2}{d})\times \dfrac{c_2-c_1}{d} \pmod{\dfrac{m_2}{d}}$
其中$inv(x,y)$表示模$y意$义下$x$的乘法逆元
重新将该式子变回等式,得:
$k_1 = inv(\dfrac{m1}{d},\dfrac{m_2}{d})\times \dfrac{c_2-c_1}{d} + y\dfrac{m_2}{d}$
该式子已经化简到尽了,考虑重新代入回最初的式子。
将$k_1$代入$x=c_1+m_1k$中,得:
$x\equiv inv(\dfrac{m1}{d},\dfrac{m_2}{d})\times \dfrac{c_2-c_1}{d}\times m1 +c_1 \pmod{\dfrac{m_1m_2}{d}}$
至此,求两条式子的扩展$CRT$已经讲完了
如果方程有多条怎么办:我们做$n-1$次的两条式子的$CRT$合并就可以了。
扩展中国剩余定理(扩展CRT)详解的更多相关文章
- 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...
- 中国剩余定理(crt)和扩展中国剩余定理(excrt)
数论守门员二号 =.= 中国剩余定理: 1.一次同余方程组: 一次同余方程组是指形如x≡ai(mod mi) (i=1,2,…,k)的同余方程构成的组 中国剩余定理的主要用途是解一次同余方程组,其中m ...
- 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...
- Han Xin and His Troops(扩展中国剩余定理 Python版)
Han Xin and His Troops(扩展中国剩余定理 Python版) 题目来源:2019牛客暑期多校训练营(第十场) D - Han Xin and His Troops 题意: 看标 ...
- 扩展中国剩余定理 (exCRT) 的证明与练习
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...
- (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...
- 学习笔记 - 中国剩余定理&扩展中国剩余定理
中国剩余定理&扩展中国剩余定理 NOIP考完回机房填坑 ◌ 中国剩余定理 处理一类相较扩展中国剩余定理更特殊的问题: 在这里要求 对于任意i,j(i≠j),gcd(mi,mj)=1 (就是互素 ...
随机推荐
- Devexpress VCL Build v2014 vol 14.2.7发布
2015年马上快过去一半了,这个玩意还在纠结在14版.其实也无所谓,反正就是改成15版,也还是这些 东西的修补. What's New in 14.2.7 (VCL Product Line) N ...
- 2018.09.14 洛谷P3931 SAC E#1 - 一道难题 Tree(树形dp)
传送门 简单dp题. f[i]表示以i为根的子树被割掉的最小值. 那么有: f[i]=min(∑vf[v],dist(i,fa))" role="presentation" ...
- python编码(三)
python 有str object 和 unicode object 两种字符串,都可以存放字符的字节编码,但是他们是不同的type,这一点很重要,也是为什么会有encode(编码)和decode( ...
- MySQL性能调优与架构设计——第 16 章 MySQL Cluster
第 16 章 MySQL Cluster 前言: MySQL Cluster 是一个基于 NDB Cluster 存储引擎的完整的分布式数据库系统.不仅仅具有高可用性,而且可以自动切分数据,冗余数据等 ...
- springmvc 孔浩 hibernate
以上为项目文件 用到的jar包:http://pan.baidu.com/s/1kT1Rsqj 1. model-User 2. beans.xml-去哪些包中找annotation:查找相应的实体类 ...
- Delphi for iOS开发指南(8):在iOS应用程序中使用Tab组件来显示分页
Delphi for iOS开发指南(8):在iOS应用程序中使用Tab组件来显示分页 在FireMonkey iOS应用程序中的Tab Tab由FMX.TabControl.TTabControl定 ...
- Activity-fragment-ListView展示
在上一篇博客,Android-fragment简介-fragment的简单使用,介绍了简单的使用: 这篇博客主要讲解,在fragment做处理事情(Activity的事情) Activity pack ...
- [翻译]NUnit---SetUp and SetUpFixture and Suite Attributes(十九)
SetUpAttribute (NUnit 2.0 / 2.5) 本特性用于TestFixture提供一个公共的功能集合,在呼叫每个测试方法之前执行.同时也用在SetUpFixture中,SetUpF ...
- 关于Java连接SQL Sever数据库
1.前提条件 需要: 1>本机上装有SQL Sever数据库(2005.2008或者更高版本) 2>eclipse或者myeclipse开发环境 3>jar文件(名为sql_jdbc ...
- ASP.NET Core真实管道详解[1]
ASP.NET Core管道虽然在结构组成上显得非常简单,但是在具体实现上却涉及到太多的对象,所以我们在 <ASP.NET Core管道深度剖析[共4篇]> 中围绕着一个经过极度简化的模拟 ...