今天在$xsy$上翻题翻到了一道扩展CRT的题,就顺便重温了下(扩展CRT模板也在里面)

中国剩余定理是用于求一个最小的$x$,满足$x\equiv c_i \pmod{m_i}$。

正常的$CRT$有一个微小的要求,就是$\forall i,j (m_i,m_j)=1$。

在某些情况下,这个式子无法被满足,这个时候就要用扩展$CRT$来求解了。

我们先假设我们只有两条方程要被求解,它们分别是:

$\begin{cases} x\equiv c_1 \pmod{m_1}\\x\equiv c_2 \pmod{m_2}\end{cases}$

我们考虑将同余去掉,就变成了:

$\begin{cases} x= c_1+m_1k_1\\x= c_2+m_2k_2\end{cases}$

联立一波,得:

$c_1+m_1k_1=c_2+m_2k_2$

$m_1k_1=(c_2-c_1)+m_2k_2$

若该方程存在解,则有$(m1,m2)|(c_2-c_1)$,否则无解

下面令$d=(m1,m2)$。

我们对等式两边全部除以$d$,得:

$\dfrac{m_1}{d}k_1=\dfrac{c_2-c_1}{d}+\dfrac{m_2}{d}k_2$

经过简单变式,得:

$\dfrac{m_1}{d}k_1\equiv \dfrac{c_2-c_1}{d} \pmod{\dfrac{m_2}{d}}$

没错,我们成功消掉了$k_2$

我们将$\dfrac{m_1}{d}$移项到等式右侧,得:

$k_1 \equiv inv(\dfrac{m1}{d},\dfrac{m_2}{d})\times \dfrac{c_2-c_1}{d} \pmod{\dfrac{m_2}{d}}$

其中$inv(x,y)$表示模$y意$义下$x$的乘法逆元

重新将该式子变回等式,得:

$k_1 = inv(\dfrac{m1}{d},\dfrac{m_2}{d})\times \dfrac{c_2-c_1}{d} + y\dfrac{m_2}{d}$

该式子已经化简到尽了,考虑重新代入回最初的式子。

将$k_1$代入$x=c_1+m_1k$中,得:

$x\equiv inv(\dfrac{m1}{d},\dfrac{m_2}{d})\times \dfrac{c_2-c_1}{d}\times m1 +c_1 \pmod{\dfrac{m_1m_2}{d}}$

至此,求两条式子的扩展$CRT$已经讲完了

如果方程有多条怎么办:我们做$n-1$次的两条式子的$CRT$合并就可以了。

扩展中国剩余定理(扩展CRT)详解的更多相关文章

  1. 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结

    中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...

  2. 中国剩余定理(crt)和扩展中国剩余定理(excrt)

    数论守门员二号 =.= 中国剩余定理: 1.一次同余方程组: 一次同余方程组是指形如x≡ai(mod mi) (i=1,2,…,k)的同余方程构成的组 中国剩余定理的主要用途是解一次同余方程组,其中m ...

  3. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  4. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  5. P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT

    EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...

  6. Han Xin and His Troops(扩展中国剩余定理 Python版)

    Han Xin and His Troops(扩展中国剩余定理 Python版) 题目来源:2019牛客暑期多校训练营(第十场) D - Han Xin and His Troops 题意:   看标 ...

  7. 扩展中国剩余定理 (exCRT) 的证明与练习

    原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...

  8. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  9. P4777 【模板】扩展中国剩余定理(EXCRT)

    思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...

  10. 学习笔记 - 中国剩余定理&扩展中国剩余定理

    中国剩余定理&扩展中国剩余定理 NOIP考完回机房填坑 ◌ 中国剩余定理 处理一类相较扩展中国剩余定理更特殊的问题: 在这里要求 对于任意i,j(i≠j),gcd(mi,mj)=1 (就是互素 ...

随机推荐

  1. VS快捷键以及Reshaper快捷键

    VS快捷键: Resharper 快捷键(此图是保存他人的[具体是谁忘记了]): 参考: http://msdn.microsoft.com/zh-cn/library/da5kh0wa.aspx

  2. 使用delphi 开发多层应用(二十二)使用kbmMW 的认证管理器

    从kbmmw 4.4 开始,增加了认证管理器,这个比原来的简单认证提供了更多的功能.细化了很多权限操作. 今天对这一块做个介绍. 要做一个认证管理,大概分为以下5步: 1.  定义你要保护的资源,一般 ...

  3. UVaLive 3487 Duopoly (最小割)

    题意:有两个公司A和B在申请一些资源,现在给出两个公司所申请的内容,内容包括价钱和申请的资源 ,现在你做为官方,你只能拒绝一个申请或者接受一个申请,同一个资源不能两个公司都拥有,且申请的资源不能只给部 ...

  4. UVa 11384 Help is needed for Dexter (递归)

    题意:给定一个n表示1到n的序列,让你用最小的步数把这个序列都变为0,每个操作可以从序列中选择一个或多个个,同时减掉一个正整数,求最少的步数. 析:一看这个题,感觉挺高深的,但是静下心来想想,其实挺简 ...

  5. Matlab 中以分数显示结果

    转http://www.blogbus.com/shijuanfeng-logs/234881647.html Matlab,计算得到的结果一般是小数形式. 但为了更精确表示,我们有时候需要用到分数形 ...

  6. tar、7z(7zip)压缩/解压缩指令的使用

    本文介绍tar.7z指令的使用方法 tar指令 在Linux中,使用的最多的压缩/解压缩指令就是tar指令了. tar指令用来将多个文件/目录结构打包.在实际使用中,往往使用tar对压缩的支持,即同时 ...

  7. Oracle sql 优化の常用方式

    1.不要用 '*' 代替所有列名,特别是字段比较多的情况下 使用select * 可以列出某个表的所有列名,但是这样的写法对于Oracle来说会存在动态解析问题.Oracle系统通过查询数据字典将 ' ...

  8. Elasticsearch 相关 api 操作

    A. es 操作 1. 检查 es 集群健康状态 2. 获取集群中的节点列表 3. 创建索引 4. 获取索引 5. 索引文档 6. 查询文档 7. 删除索引 8. 更新文档 9. 删除文档 10. 批 ...

  9. IllegalArgumentException: requirement failed: Corrupt index found

    今天突然接到客户反映线上服务器发送消息异常,登录服务器查看是kafka服务出现了问题,想重启一下服务,结果重启出现一下报错 [2017-06-30 19:29:13,708] FATAL Fatal ...

  10. spring的事务传播属性

    一.Propagation (事务的传播属性) Propagation : key属性确定代理应该给哪个方法增加事务行为.这样的属性最重要的部份是传播行为.有以下选项可供使用:PROPAGATION_ ...