300. Longest Increasing Subsequence


300. Longest Increasing Subsequence

Given an unsorted array of integers, find the length of longest increasing subsequence.

Example:

Input: [,,,,,,,]
Output:
Explanation: The longest increasing subsequence is [,,,], therefore the length is . Note: There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity. Follow up: Could you improve it to O(n log n) time complexity?

https://www.felix021.com/blog/read.php?entryid=1587&page=3&part=1  感谢作者!

标题:最长递增子序列 O(NlogN)算法
出处:Blog of Felix021
时间:Wed, 13 May 2009 04:15:10 +0000
作者:felix021
地址:https://www.felix021.com/blog/read.php?1587
 
内容:
今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。
看了好久好久,现在终于想明白了。
试着把它写下来,让自己更明白。
 
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。
 
假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
 
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
 
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
 
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
 
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
 
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
 
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
 
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
 
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
 
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
 
于是我们知道了LIS的长度为5。
 
!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
 
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
 
代码如下:

 //在非递减序列 arr[s..e](闭区间)上二分查找第一个大于等于key的位置,如果都小于key,就返回e+1
int upper_bound(int arr[], int s, int e, int key)
{
int mid;
if (arr[e] <= key)
return e + ;
while (s < e)
{
mid = s + (e - s) / ;
if (arr[mid] <= key)
s = mid + ;
else
e = mid;
}
return s;
} int LIS(int d[], int n)
{
int i = , len = , *end = (int *)alloca(sizeof(int) * (n + ));
end[] = d[]; //初始化:长度为1的LIS末尾为d[0]
for (i = ; i < n; i++)
{
int pos = upper_bound(end, , len, d[i]); //找到插入位置
end[pos] = d[i];
if (len < pos) //按需要更新LIS长度
len = pos;
}
return len;
}

Generated by Bo-blog 2.1.0

300. Longest Increasing Subsequence_算法有误的更多相关文章

  1. [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  2. 300. Longest Increasing Subsequence

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...

  3. Leetcode 300 Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  4. leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)

    https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...

  5. [leetcode]300. Longest Increasing Subsequence最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  6. 【leetcode】300.Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  7. 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  8. [leetcode] 300. Longest Increasing Subsequence (Medium)

    题意: 求最长增长的子序列的长度. 思路: 利用DP存取以i作为最大点的子序列长度. Runtime: 20 ms, faster than 35.21% of C++ online submissi ...

  9. LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...

随机推荐

  1. Python基础_内置函数

        Built-in Functions     abs() delattr() hash() memoryview() set() all() dict() help() min() setat ...

  2. Mac SpotLight无法搜索

    在终端运行如下命令: sudo mdutil -i on /

  3. C/C++:static用法总结

    前言:static是C/C++中一个很重要的关键字,最近阅读了很多博客和资料,遂在此对自己的学习笔记进行简单的总结并发表在这里 一.C语言中的static • 静态全局变量:在全局变量之前加上关键字s ...

  4. 软工实践-Beta 冲刺 (2/7)

    队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 1.界面的修改与完善 展示GitHub当日代码/文档签入记 ...

  5. (2016.2.2)1001.A+B Format (20)解题思路

    https://github.com/UNWILL2LOSE/object-oriented 解题思路 目标: *首先运算要求实现输入2个数后,输出类似于银行的支票上的带分隔符规则的数字. 代码实现思 ...

  6. Leetcode题库——23.合并k个排序链表

    @author: ZZQ @software: PyCharm @file: mergeKLists.py @time: 2018/10/12 19:55 说明:合并 k 个排序链表,返回合并后的排序 ...

  7. Maven教程--02设置Maven本地仓库|查看Maven中央仓库

    一:设置Maven本地仓库 Maven默认仓库的路径:~\.m2\repository,~表示我的个人文档:例如:C:\Users\Edward\.m2\repository:如下图: Maven的配 ...

  8. Oracle 11g R2 for Win7旗舰版(64位)- 安装

    1.下载Oracle 11g R2 for Windows的版本                                   下载地址:http://www.oracle.com/techne ...

  9. Idea使用Mybatis Generator 自动生成代码

    (1)创建一个maven工程 (2)配置pom文件 <dependencies> <dependency> <groupId>mysql</groupId&g ...

  10. 多进程编程之system()函数

    1.system函数: 使用函数system,在程序中执行一个shell命令字符串很方便.它是一个和操作系统紧密相关的函数,用户可以使用它在自己的程序中调用系统提供的各种命令,执行系统的命令行,其实也 ...