300. Longest Increasing Subsequence


300. Longest Increasing Subsequence

Given an unsorted array of integers, find the length of longest increasing subsequence.

Example:

Input: [,,,,,,,]
Output:
Explanation: The longest increasing subsequence is [,,,], therefore the length is . Note: There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity. Follow up: Could you improve it to O(n log n) time complexity?

https://www.felix021.com/blog/read.php?entryid=1587&page=3&part=1  感谢作者!

标题:最长递增子序列 O(NlogN)算法
出处:Blog of Felix021
时间:Wed, 13 May 2009 04:15:10 +0000
作者:felix021
地址:https://www.felix021.com/blog/read.php?1587
 
内容:
今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。
看了好久好久,现在终于想明白了。
试着把它写下来,让自己更明白。
 
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。
 
假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
 
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
 
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
 
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
 
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
 
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
 
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
 
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
 
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
 
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
 
于是我们知道了LIS的长度为5。
 
!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
 
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
 
代码如下:

 //在非递减序列 arr[s..e](闭区间)上二分查找第一个大于等于key的位置,如果都小于key,就返回e+1
int upper_bound(int arr[], int s, int e, int key)
{
int mid;
if (arr[e] <= key)
return e + ;
while (s < e)
{
mid = s + (e - s) / ;
if (arr[mid] <= key)
s = mid + ;
else
e = mid;
}
return s;
} int LIS(int d[], int n)
{
int i = , len = , *end = (int *)alloca(sizeof(int) * (n + ));
end[] = d[]; //初始化:长度为1的LIS末尾为d[0]
for (i = ; i < n; i++)
{
int pos = upper_bound(end, , len, d[i]); //找到插入位置
end[pos] = d[i];
if (len < pos) //按需要更新LIS长度
len = pos;
}
return len;
}

Generated by Bo-blog 2.1.0

300. Longest Increasing Subsequence_算法有误的更多相关文章

  1. [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  2. 300. Longest Increasing Subsequence

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...

  3. Leetcode 300 Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  4. leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)

    https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...

  5. [leetcode]300. Longest Increasing Subsequence最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  6. 【leetcode】300.Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  7. 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  8. [leetcode] 300. Longest Increasing Subsequence (Medium)

    题意: 求最长增长的子序列的长度. 思路: 利用DP存取以i作为最大点的子序列长度. Runtime: 20 ms, faster than 35.21% of C++ online submissi ...

  9. LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...

随机推荐

  1. head和tail命令详解

    基础命令学习目录首页 原文链接:https://www.cnblogs.com/amosli/p/3496027.html 当要查看上千行的大文件时,我们可不会用cat命令把整个文件内容给打印出来,相 ...

  2. node上的__dirname和./的区别

    概要 Node.js 中,__dirname 总是指向被执行 js 文件的绝对路径,所以当你在 /d1/d2/myscript.js 文件中写了 __dirname, 它的值就是 /d1/d2 . 相 ...

  3. OpenCV-Python(1)在Python中使用OpenCV进行人脸检测

    OpenCV是如今最流行的计算机视觉库,而我们今天就是要学习如何安装使用OpenCV,以及如何去访问我们的摄像头.然后我们一起来看看写一个人脸检测程序是如何地简单,简单到只需要几行代码. 在开始之前, ...

  4. Daily Scrum 11.18

    今日完成任务: 1.在提问问题的时候为问题创建索引 2.解决了修改个人资料后刷新没有更新的问题 3.初步加入了采纳功能(没完善UI设计) 遇到困难:创建索引之后,跳转到主页,需要重新登录,找了半天不知 ...

  5. Sdn - 基础题试水

    ## sdn - 初步分析基于OpenFlow的SDN网络控制功能 题目要求: 1.下发流表项实现 h1 和 h2,h2 和 h3 不能互通.h1 和 h3 可互通. 2.结合捕获的 SDN 相关协议 ...

  6. 【图论】POJ-3169 差分约束系统

    一.题目 Description Like everyone else, cows like to stand close to their friends when queuing for feed ...

  7. DPDK RX / TX Callbacks 源码阅读

    这个sample是基于basicfw的.basicfw就是一个网口收到的包立即从另一个网口转发出去,非常简洁明了的程序,可以通过basicfw学习基础的DPDK发包API.RX / TX Callba ...

  8. url 地址含参数较多如何拼接

    url 地址拼接是经常会遇到的问题.所以必须要掌握这个技术 1.合并参数对象,循环出来. var commonParams = { g_tk: 1928093487, inCharset: 'utf- ...

  9. Python入门:数据结构的3个小技巧

    这是关于Python的第11篇文章,主要介绍下数据结构的3个小技巧. 排序: 使用sorted函数实现排序. sorted函数按照长短.大小.英文字母的顺序给每个列表的元素进行排序.这个函数经常在数据 ...

  10. js汉字按字母排序

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...