300. Longest Increasing Subsequence_算法有误
300. Longest Increasing Subsequence
300. Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Input: [,,,,,,,]
Output:
Explanation: The longest increasing subsequence is [,,,], therefore the length is . Note: There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity. Follow up: Could you improve it to O(n log n) time complexity?
https://www.felix021.com/blog/read.php?entryid=1587&page=3&part=1 感谢作者!
标题:最长递增子序列 O(NlogN)算法
出处:Blog of Felix021
时间:Wed, 13 May 2009 04:15:10 +0000
作者:felix021
地址:https://www.felix021.com/blog/read.php?1587
内容:
今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。
看了好久好久,现在终于想明白了。
试着把它写下来,让自己更明白。
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。
假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
于是我们知道了LIS的长度为5。
!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
代码如下:
//在非递减序列 arr[s..e](闭区间)上二分查找第一个大于等于key的位置,如果都小于key,就返回e+1
int upper_bound(int arr[], int s, int e, int key)
{
int mid;
if (arr[e] <= key)
return e + ;
while (s < e)
{
mid = s + (e - s) / ;
if (arr[mid] <= key)
s = mid + ;
else
e = mid;
}
return s;
} int LIS(int d[], int n)
{
int i = , len = , *end = (int *)alloca(sizeof(int) * (n + ));
end[] = d[]; //初始化:长度为1的LIS末尾为d[0]
for (i = ; i < n; i++)
{
int pos = upper_bound(end, , len, d[i]); //找到插入位置
end[pos] = d[i];
if (len < pos) //按需要更新LIS长度
len = pos;
}
return len;
}
Generated by Bo-blog 2.1.0
300. Longest Increasing Subsequence_算法有误的更多相关文章
- [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- 300. Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...
- Leetcode 300 Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)
https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...
- [leetcode]300. Longest Increasing Subsequence最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- 【leetcode】300.Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [leetcode] 300. Longest Increasing Subsequence (Medium)
题意: 求最长增长的子序列的长度. 思路: 利用DP存取以i作为最大点的子序列长度. Runtime: 20 ms, faster than 35.21% of C++ online submissi ...
- LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...
随机推荐
- head和tail命令详解
基础命令学习目录首页 原文链接:https://www.cnblogs.com/amosli/p/3496027.html 当要查看上千行的大文件时,我们可不会用cat命令把整个文件内容给打印出来,相 ...
- node上的__dirname和./的区别
概要 Node.js 中,__dirname 总是指向被执行 js 文件的绝对路径,所以当你在 /d1/d2/myscript.js 文件中写了 __dirname, 它的值就是 /d1/d2 . 相 ...
- OpenCV-Python(1)在Python中使用OpenCV进行人脸检测
OpenCV是如今最流行的计算机视觉库,而我们今天就是要学习如何安装使用OpenCV,以及如何去访问我们的摄像头.然后我们一起来看看写一个人脸检测程序是如何地简单,简单到只需要几行代码. 在开始之前, ...
- Daily Scrum 11.18
今日完成任务: 1.在提问问题的时候为问题创建索引 2.解决了修改个人资料后刷新没有更新的问题 3.初步加入了采纳功能(没完善UI设计) 遇到困难:创建索引之后,跳转到主页,需要重新登录,找了半天不知 ...
- Sdn - 基础题试水
## sdn - 初步分析基于OpenFlow的SDN网络控制功能 题目要求: 1.下发流表项实现 h1 和 h2,h2 和 h3 不能互通.h1 和 h3 可互通. 2.结合捕获的 SDN 相关协议 ...
- 【图论】POJ-3169 差分约束系统
一.题目 Description Like everyone else, cows like to stand close to their friends when queuing for feed ...
- DPDK RX / TX Callbacks 源码阅读
这个sample是基于basicfw的.basicfw就是一个网口收到的包立即从另一个网口转发出去,非常简洁明了的程序,可以通过basicfw学习基础的DPDK发包API.RX / TX Callba ...
- url 地址含参数较多如何拼接
url 地址拼接是经常会遇到的问题.所以必须要掌握这个技术 1.合并参数对象,循环出来. var commonParams = { g_tk: 1928093487, inCharset: 'utf- ...
- Python入门:数据结构的3个小技巧
这是关于Python的第11篇文章,主要介绍下数据结构的3个小技巧. 排序: 使用sorted函数实现排序. sorted函数按照长短.大小.英文字母的顺序给每个列表的元素进行排序.这个函数经常在数据 ...
- js汉字按字母排序
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...