300. Longest Increasing Subsequence_算法有误
300. Longest Increasing Subsequence
300. Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Input: [,,,,,,,]
Output:
Explanation: The longest increasing subsequence is [,,,], therefore the length is . Note: There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity. Follow up: Could you improve it to O(n log n) time complexity?
https://www.felix021.com/blog/read.php?entryid=1587&page=3&part=1 感谢作者!
标题:最长递增子序列 O(NlogN)算法
出处:Blog of Felix021
时间:Wed, 13 May 2009 04:15:10 +0000
作者:felix021
地址:https://www.felix021.com/blog/read.php?1587
内容:
今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。
看了好久好久,现在终于想明白了。
试着把它写下来,让自己更明白。
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。
假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
于是我们知道了LIS的长度为5。
!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
代码如下:
//在非递减序列 arr[s..e](闭区间)上二分查找第一个大于等于key的位置,如果都小于key,就返回e+1
int upper_bound(int arr[], int s, int e, int key)
{
int mid;
if (arr[e] <= key)
return e + ;
while (s < e)
{
mid = s + (e - s) / ;
if (arr[mid] <= key)
s = mid + ;
else
e = mid;
}
return s;
} int LIS(int d[], int n)
{
int i = , len = , *end = (int *)alloca(sizeof(int) * (n + ));
end[] = d[]; //初始化:长度为1的LIS末尾为d[0]
for (i = ; i < n; i++)
{
int pos = upper_bound(end, , len, d[i]); //找到插入位置
end[pos] = d[i];
if (len < pos) //按需要更新LIS长度
len = pos;
}
return len;
}
Generated by Bo-blog 2.1.0
300. Longest Increasing Subsequence_算法有误的更多相关文章
- [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- 300. Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...
- Leetcode 300 Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)
https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...
- [leetcode]300. Longest Increasing Subsequence最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- 【leetcode】300.Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [leetcode] 300. Longest Increasing Subsequence (Medium)
题意: 求最长增长的子序列的长度. 思路: 利用DP存取以i作为最大点的子序列长度. Runtime: 20 ms, faster than 35.21% of C++ online submissi ...
- LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...
随机推荐
- PropertyGrid中的枚举显示为中文
参考http://www.cnblogs.com/yank/archive/2011/09/17/2179598.html 在上述文档的基础上做了改进.从EnumConverter类派生 显示效果: ...
- Node.js中exports,module.exports以及require方法
在Node.js中,使用module.exports.f = ...与使用exports.f = ...是一样的,此时exports就是module.exports的一种简写方式.但是,需要注意的是, ...
- OO学习第一阶段总结
前言 虽然之前接触过java,也写过一些1000行左右的程序.可以说面向对象的思想和java的一些基本语法对我来说是没有难度的,但是这学期的面向对象依然给了我一个下马威.这几次的作业每次都很让我头疼. ...
- C++:类中两个易被忽略的默认函数
C++的自定义类中有六个默认的函数,即如果用户没有显式定义这些函数时,C++编译器会类中生成这些函数的默认形式.除了大家所熟知的构造函数.拷贝构造函数.赋值函数和析构函数外,C++为自定义类 还提供了 ...
- 1001.A+B Format (20) 解题
代码入口(https://github.com/NSDie/object-oriented) 这题的解题思路我有两个: 第一个是两个数字相加然后判断位数,因为题目限制了范围1000000的绝对值以内嘛 ...
- JVM面试问题
JVM主要包括:程序计数器(Program Counter),Java堆(Heap),Java虚拟机栈(Stack),本地方法栈(Native Stack),方法区(Method Area) 1.程序 ...
- Scrum 项目准备5.0
1.团队成员完成自己认领的任务. 2.燃尽图:理解.设计并画出本次Sprint的燃尽图的理想线.参考图6. 3.每日立会更新任务板上任务完成情况.燃尽图的实际线,分析项目进度是否在正轨. 每天的 ...
- Internet History, Technology and Security (Week 5-2)
Week 5 (续) Layer 2: Internet Protocol The InterNetwork (IP) 老师强调了一下不用去记住他介绍的人所说的每句话,而是记住要点,了解老师所做的PP ...
- QObject 源代码阅读
我们进入 qt/src 文件夹.你可能对这里的目录名时曾相识,因为几乎这里的所有文件夹名都对应着 Qt 的模块的名字:gui,network,multimedia等等.我们从最核心的 QtCore 开 ...
- 理解RESTful架构【转】
越来越多的人开始意识到,网站即软件,而且是一种新型的软件. 这种"互联网软件"采用客户端/服务器模式,建立在分布式体系上,通过互联网通信,具有高延时(high latency).高 ...