300. Longest Increasing Subsequence


300. Longest Increasing Subsequence

Given an unsorted array of integers, find the length of longest increasing subsequence.

Example:

Input: [,,,,,,,]
Output:
Explanation: The longest increasing subsequence is [,,,], therefore the length is . Note: There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity. Follow up: Could you improve it to O(n log n) time complexity?

https://www.felix021.com/blog/read.php?entryid=1587&page=3&part=1  感谢作者!

标题:最长递增子序列 O(NlogN)算法
出处:Blog of Felix021
时间:Wed, 13 May 2009 04:15:10 +0000
作者:felix021
地址:https://www.felix021.com/blog/read.php?1587
 
内容:
今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。
看了好久好久,现在终于想明白了。
试着把它写下来,让自己更明白。
 
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。
 
假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
 
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
 
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
 
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
 
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
 
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
 
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
 
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
 
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
 
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
 
于是我们知道了LIS的长度为5。
 
!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
 
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
 
代码如下:

 //在非递减序列 arr[s..e](闭区间)上二分查找第一个大于等于key的位置,如果都小于key,就返回e+1
int upper_bound(int arr[], int s, int e, int key)
{
int mid;
if (arr[e] <= key)
return e + ;
while (s < e)
{
mid = s + (e - s) / ;
if (arr[mid] <= key)
s = mid + ;
else
e = mid;
}
return s;
} int LIS(int d[], int n)
{
int i = , len = , *end = (int *)alloca(sizeof(int) * (n + ));
end[] = d[]; //初始化:长度为1的LIS末尾为d[0]
for (i = ; i < n; i++)
{
int pos = upper_bound(end, , len, d[i]); //找到插入位置
end[pos] = d[i];
if (len < pos) //按需要更新LIS长度
len = pos;
}
return len;
}

Generated by Bo-blog 2.1.0

300. Longest Increasing Subsequence_算法有误的更多相关文章

  1. [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  2. 300. Longest Increasing Subsequence

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...

  3. Leetcode 300 Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  4. leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)

    https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...

  5. [leetcode]300. Longest Increasing Subsequence最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  6. 【leetcode】300.Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  7. 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  8. [leetcode] 300. Longest Increasing Subsequence (Medium)

    题意: 求最长增长的子序列的长度. 思路: 利用DP存取以i作为最大点的子序列长度. Runtime: 20 ms, faster than 35.21% of C++ online submissi ...

  9. LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...

随机推荐

  1. js中if else switch 条件判断的替代方法

    function condition(test){ return({ cat :function(){console.log('cat');}, dog :function(){console.log ...

  2. Notes of Daily Scrum Meeting(11.19)

    Notes of Daily Scrum Meeting(11.19) 现在工程项目进入尾声了,我们的项目中还有一些问题需要解决,调试修改起来进度比较慢,所以昨天就没有贴出项目 进度,今天的团队工作总 ...

  3. 20172329 2018-2019-2 《Java软件结构与数据结构》实验二报告

    20172329 2018-2019-2 <Java软件结构与数据结构>实验二报告 课程:<Java软件结构与数据结构> 班级: 1723 姓名: 王文彬 学号:2017232 ...

  4. iOS自学-UILabel常见属性

    #import "ViewController.h" #import <CoreText/CoreText.h> @interface ViewController ( ...

  5. 课堂讨论—Alpha版总结会议

    我们在课堂上针对第一阶段冲刺过程中存在的问题,展开了激烈的讨论,并投票选出需要改进的最主要三个问题. 有图有真相:

  6. Android笔记-3-EditText的属性介绍

    [Android 基础]EditText的属性介绍 EditText继承TextView,所以EditText具有TextView的属性特点,下面主要介绍一些EditText的特有的输入法的属性特点 ...

  7. js 刷新当前页面会弹出提示框怎样将这个提示框去掉

    //禁止刷新提示window.onbeforeunload = function() { var n = window.event.screenX - window.screenLeft; var b ...

  8. css border 制作三角形

    border 边框 上三角 是只有上面的border 有颜色,其余的边框都是tranparents,下三角只有下面的border 有颜色,其余的边框都是tranparents,左三角只有左面的bord ...

  9. SCRIPT7002: XMLHttpRequest: 网络错误 0x2efe, 由于出现错误 00002efe 而导致此项操作无法完成

    google中带中文参数可能查询,但是在IE带中文参数不能查询:报如下错误 SCRIPT7002: XMLHttpRequest: 网络错误 0x2efe, 由于出现错误 00002efe 而导致此项 ...

  10. scrapy学习笔记(三):使用item与pipeline保存数据

    scrapy下使用item才是正经方法.在item中定义需要保存的内容,然后在pipeline处理item,爬虫流程就成了这样: 抓取 --> 按item规则收集需要数据 -->使用pip ...