题面

题解

考察\(dep[\mathrm{LCA}(i, x)]\)的性质,发现它是\(i\)和\(x\)的链交的长度。

那么对每个\(i\)所在的链打一个区间加标记,询问时算一下\(x\)所在的链的区间和即可。

如果有\(l \leq i \leq r\)的限制,就进行离线处理即可。

代码

好久之前的代码,有点丑见谅。

#include<bits/stdc++.h>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define for_edge(i, x) for(RG int i=head[x];i;i=e[i].next)
#define clear(x, y) memset(x, y, sizeof(x));
using namespace std; template<typename T = int>
inline T read()
{
T data=0, w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1, ch=getchar();
while(ch>='0'&&ch<='9') data=(data<<3)+(data<<1)+(ch^48), ch=getchar();
return data*w;
} const int maxn(50010), mod(201314);
struct edge { int next, to; } e[maxn];
int head[maxn], e_num, n, q;
inline void add_edge(int from, int to) { e[++e_num]={head[from], to}; head[from]=e_num; }
int fa[maxn], heavy[maxn], size[maxn];
void dfs(int x)
{
size[x]=1;
int _max=0;
for_edge(i, x)
{
int to=e[i].to; dfs(to);
size[x]+=size[to];
if(size[to]>_max) _max=size[to], heavy[x]=to;
}
}
int pos[maxn], belong[maxn], cnt_node;
void dfs(int x, int chain)
{
pos[x]=++cnt_node;
belong[x]=chain;
int k=heavy[x];
if(!k) return;
dfs(k, chain);
for_edge(i, x)
{
int to=e[i].to;
if(to==k) continue;
dfs(to, to);
}
}
int sum[maxn<<2], lazy[maxn<<2];
#define son(i) ((root<<1)|i)
inline void pushdown(int root, int l, int r)
{
if(l==r) lazy[root]=0;
if(!lazy[root]) return;
int mid(l+r>>1);
sum[son(0)]+=(mid-l+1)*lazy[root];
sum[son(1)]+=(r-mid)*lazy[root];
lazy[son(0)]+=lazy[root];
lazy[son(1)]+=lazy[root];
lazy[root]=0;
}
inline void update(int l, int r, int root=1, int nl=1, int nr=cnt_node)
{
if(nr<l || nl>r) return;
if(l<=nl && nr<=r)
{
sum[root]+=nr-nl+1;
lazy[root]++;
return;
}
int mid(nl+nr>>1);
pushdown(root, nl, nr);
update(l, r, son(0), nl, mid); update(l, r, son(1), mid+1, nr);
sum[root]=sum[son(0)]+sum[son(1)];
}
inline void update_chain(int x) { while(x) update(pos[belong[x]], pos[x]), x=fa[belong[x]]; }
inline int query(int l, int r, int root=1, int nl=1, int nr=cnt_node)
{
if(nr<l || nl>r) return 0;
if(l<=nl && nr<=r) return sum[root];
int mid(nl+nr>>1);
pushdown(root, nl, nr);
return query(l, r, son(0), nl, mid)+query(l, r, son(1), mid+1, nr);
}
inline int query_chain(int x)
{
int ans=0;
while(x) ans+=query(pos[belong[x]], pos[x]), x=fa[belong[x]];
return ans;
} vector<int> le[maxn], ri[maxn];
int ans[maxn], que[maxn];
int main()
{
n=read(); q=read();
for(RG int i=2;i<=n;i++) fa[i]=read()+1, add_edge(fa[i], i);
dfs(1); dfs(1, 1);
RG int l, r, z;
for(RG int i=1;i<=q;i++) l=read(), r=read(), z=read(), le[l].push_back(i), ri[r+1].push_back(i), que[i]=z+1;
for(RG int i=1;i<=n;i++)
{
update_chain(i);
for(RG auto j : ri[i]) (ans[j]+=query_chain(que[j]))%=mod;
for(RG auto j : le[i]) ans[j]=(ans[j]-query_chain(que[j])+mod)%mod;
}
for(RG int i=1;i<=q;i++) printf("%d\n", (ans[i]+mod)%mod);
return 0;
}

【LNOI2014】LCA的更多相关文章

  1. bzoj3626【LNOI2014】LCA

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1266  Solved: 448 [Submit][Stat ...

  2. 【BZOJ3626】LCA(树链剖分,Link-Cut Tree)

    [BZOJ3626]LCA(树链剖分,Link-Cut Tree) 题面 Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. ...

  3. 【LNOI2014】【BZOJ3626】NOIp2018模拟(三) LCA

    Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设$dep[i]$表示点i的深度,$lca(i,j)$表示i与j的最近公共祖 ...

  4. 【P4211 LNOI2014】LCA——树链剖分 +询问离线

    (7.16晚)更完先在B站颓一会儿-- --------------------------------------------------------------- (以下为luogu题面) 题目描 ...

  5. 【BZOJ-3626】LCA 树链剖分

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1428  Solved: 526[Submit][Status ...

  6. 【Homework】LCA&RMQ

    我校是神校,作业竟然选自POJ,难道不知道“珍爱生命 勿刷POJ”么? 所有注明模板题的我都十分傲娇地没有打,于是只打了6道题(其实模板题以前应该打过一部分但懒得找)(不过感觉我模板还是不够溜要找个时 ...

  7. 【模板】LCA

    代码如下 #include <bits/stdc++.h> using namespace std; const int maxn=5e5+10; inline int read(){ i ...

  8. 【BZOJ3626】LCA(树上差分,树链剖分)

    题意:给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询问给 ...

  9. 【模板】Lca倍增法

    Codevs 1036 商务旅行 #include<cstdio> #include<cmath> #include<algorithm> using namesp ...

随机推荐

  1. Vue2学习笔记:键盘事件

    Vue2键盘事件:keydown/keyup... 1.使用 <!DOCTYPE html> <html> <head> <title></tit ...

  2. 使用mac版思维导图软件MindNode

    下载地址 http://pan.baidu.com/s/1hq3fUVq 思维导图又叫心智图,是表达发射性思维的有效的图形思维工具 ,它简单却又极其有效,是一种革命性的思维工具.思维导图运用图文并重的 ...

  3. [翻译] PPiAwesomeButton

    PPiAwesomeButton https://github.com/pepibumur/PPiAwesomeButton UIButton category with new methods to ...

  4. 使用CoreData [3]

    使用CoreData [3] 此篇幅介绍CoreData如何升级版本防止崩溃 把你之前创建的实体文件全部删除掉,把沙盒中的数据库文件删除掉,实体只保持一个,然后重新创建出实体文件. - (BOOL)a ...

  5. windows下搭建vue开发环境

    Vue.js是一套构建用户界面的 “渐进式框架”.与其他重量级框架不同的是,Vue 采用自底向上增量开发的设计.Vue 的核心库只关注视图层,并且非常容易学习,非常容易与其它库或已有项目整合.2016 ...

  6. Composer 的简介、安装及使用

    Composer的简介 简单说,Composer 就是一个安装包管理工具,服务于 PHP 生态系统.它包括了两个部分:Composer 和 Packagist. Composer Composer 是 ...

  7. int to string & string to int

    #include "stdafx.h" #include <string> #include <sstream> using namespace std; ...

  8. IKVM.NET入门(2)

    ikvm.net是什么 http://www.ikvm.net/ ikvm.net是能够运行在mono和.net framework的java虚拟机.它包括了 在.net中实现的一个java虚拟机 j ...

  9. 学习python第三天单行函数

    1.去重:distinct关键字 需求:查看公司一共有多少部门? select department_id from employees;此代码会查出107条记录,存在部门重复的问题! select ...

  10. Undefined function or method 'deploywhich' for input arguments of type 'char'

    在进行matlab和java混合编程的时候.由matlab打包,把m文件转换为jar文件.供java调用.有时在Tomcat中调用此类jar类会出现如题或者以下的错误: ??? Error using ...