题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$。其中,$n≤10^9,m≤10^5$。

考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$j$的方案数。

我们构造一个数组$g$,若i为不大于$m$的质数,则$g[i]=1$,否则为$0$。

那么显然,$f[i][j]=\sum f[i-1][k]\times g[j \oplus k]$。  其中$j \oplus k$表示$j$和$k$的按位异或。

然后我们不难发现,$f[i]为f[i-1]$与$g$的异或卷积。

则$f[n]$为$g$的$n$次异或卷积,答案显然为$f[n][0]$。

我们用$FWT$将$g$变成点值表达式,然后做快速幂,最后再插值回来,就得到答案了。

时间复杂度为$O(m\ log\ m+m\ log\ n)$。

 #include<bits/stdc++.h>
#define M 131072
#define L long long
#define MOD 1000000007
using namespace std;
int b[M]={},pri[M]={},use=;
void init(){
for(int i=;i<M;i++){
if(!b[i]) pri[++use]=i;
for(int j=;j<=use&&i*pri[j]<M;j++){
b[i*pri[j]]=;
if(i%pri[j]==) break;
}
}
}
L pow_mod(L x,int k){
L ans=;
while(k){
if(k&) ans=ans*x%MOD;
x=x*x%MOD; k>>=;
}
return ans;
}
void FWT(L a[],int n,int on){
for(int i=;i<n;i<<=)
for(int j=;j<n;j++)
if(i&j){
L w=a[i^j];
a[i^j]=(w+a[j])%MOD;
a[j]=(w-a[j]+MOD)%MOD;
}
if(on==-){
L inv=pow_mod(n,MOD-);
for(int i=;i<n;i++) a[i]=a[i]*inv%MOD;
}
}
L g[M]={},ans[M]={};
int main(){
init();
int t,n;
while(cin>>t>>n){
int len=; while(len<=n) len<<=;
for(int i=;i<=n;i++) if(b[i]==) g[i]=;
FWT(g,len,); memcpy(ans,g,M<<); t--;
while(t){
if(t&) for(int i=;i<len;i++) ans[i]=ans[i]*g[i]%MOD;
t>>=; for(int i=;i<len;i++) g[i]=g[i]*g[i]%MOD;
}
FWT(ans,len,-);
printf("%lld\n",ans[]);
memset(g,,len<<); memset(ans,,len<<);
}
}

【bzoj4589】Hard Nim FWT+快速幂的更多相关文章

  1. BZOJ4589: Hard Nim(FWT 快速幂)

    题意 题目链接 Sol 神仙题Orzzzz 题目可以转化为从\(\leqslant M\)的质数中选出\(N\)个\(xor\)和为\(0\)的方案数 这样就好做多了 设\(f(x) = [x \te ...

  2. BZOJ4589 Hard Nim FWT 快速幂 博弈

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4589.html 题目传送门 - BZOJ4589 题意 有 $n$ 堆石子,每一堆石子的取值为 $2$ ...

  3. [bzoj4589]Hard Nim(FWT快速沃尔什变化+快速幂)

    题面:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 题意 求选恰好n个数,满足每个数都是不大于m的质数,且它们的异或和为0的方案数. 解法 ...

  4. 【51Nod1773】A国的贸易 FWT+快速幂

    题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...

  5. BZOJ4589 Hard Nim(快速沃尔什变换FWT)

    这是我第一道独立做出来的FWT的题目,所以写篇随笔纪念一下. (这还要纪念,我太弱了) 题目链接: BZOJ 题目大意:两人玩nim游戏(多堆石子,每次可以从其中一堆取任意多个,不能操作就输).$T$ ...

  6. bzoj 4589: Hard Nim【线性筛+FWT+快速幂】

    T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...

  7. bzoj4589: Hard Nim fwt

    题意:求n个m以内的素数亦或起来为0的方案数 题解:fwt板子题,先预处理素数,把m以内素数加一遍(下标),然后fwt之后快速幂即可,在ifwt之后a[0]就是答案了 /*************** ...

  8. BZOJ4589 Hard Nim(快速沃尔什变换模板)

    终于抽出时间来学了学,比FFT不知道好写到哪里去. #include <cstdio> typedef long long ll; ,p=1e9+; int k,m,n,a[N],pi[N ...

  9. BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...

随机推荐

  1. 2018.09.18 atcoder Many Formulas(搜索)

    传送门 感觉自己搜索能力退化了,这种弱智搜索写了整整5min,这样下去比赛会凉的. 看来得多练练题了. 代码: #include<bits/stdc++.h> #define ll lon ...

  2. [转]Go与C语言的互操作

    Go有强烈的C背景,除了语法具有继承性外,其设计者以及其设计目标都与C语言有着千丝万缕的联系.在Go与C语言互操作(Interoperability)方面,Go更是提供了强大的支持.尤其是在Go中使用 ...

  3. 有趣的NaN类型

    在学习Java集合的时候遇到了Float.isNaN(float)函数,点进去一看就不理解了,函数实现如下: public static boolean isNaN(float v) { return ...

  4. Spring bean是如何加载的

    Spring bean是如何加载的 加载bean的主要逻辑 在AbstractBeanFactory中doGetBean对加载bean的不同情况进行拆分处理,并做了部分准备工作 具体如下 获取原始be ...

  5. Linux 用 sftp scp命令 互传文件

    sftp它类似于 ftp, 但它进行加密传输,比FTP有更高的安全性. sftp 是SSH服务的子程序 常用命令 pwd 查看当前工作目录 ls 查看远程当前目录下的所以文件或者目录信息 lls 查看 ...

  6. 深入浅析Node.js单线程模型

    Node.js采用 事件驱动 和 异步I/O 的方式,实现了一个单线程.高并发的运行时环境,而单线程就意味着同一时间只能做一件事,那么Node.js如何利用单线程来实现高并发和异步I/O?本文将围绕这 ...

  7. NOR Flash的学习

    NOR Flash简介    NOR FLASH是INTEL在1988年推出的一款商业性闪存芯片,它需要很长的时间进行抹写,大半生它能够提供完整的寻址与数据总线,并允许随机存取存储器上的任何区域,而且 ...

  8. 使用for in循环遍历json对象的数据

    使用for in遍历json对象数据,如果数据中的名称有为数字的话,只对正整数有效,那么先会输出为正整数的数据,后面其他的会按照原来数据中定义的顺序不变输出. 针对名称为数字的json对象数据进行测试 ...

  9. Android 权限的由来

    在Android APP开发过程中,某些行为动作需要在AndroidManifest.xml清单文件中进行权限相关的配置: <!-- 增加权限 --> <uses-permissio ...

  10. SQL Server 索引基本概念与优化

    数据页和区 页 SQL Server 中的数据以“页”(Page)的形式保存数据,页是SQL Server 的IO单位,读/写一次至少是一页.一页为8K(8192byte). 页由三部分组成,页头,数 ...