描述

给出一个无向连通图,即在任一个点对间存在路径。有的点提供服务a, 有的点提供服务b 。同一个点可能有两种服务类型。每个点必须与提供2种服务的点连通。如果一个边断掉,就可能出现有些点不能被服务到,那么这条边就称为关键边。你的任务是找出关键边数量以及每条关键边。

输入

第一行是整数N,M,K,L (1<=N<=100000, 1<=M<=1000000, 1<=K<=N,1<=L<=N)。N是图节点数;M是边数;k是提供服务a的点个数;L是提供服务b的点个数。第二行有K个数,每个数表示提供服务a的节点。第三行有L个数,每个数表示提供服务b的节点。接下来M行,每行两个不同的数,他们表示一条边的两个节点。

输出

输出文件只有一行为一个整数S,表示关键边的数量。

样例输入

9 10 3 4

2 4 5

4 9 8 3

1 2

4 1

2 3

4 2

1 5

5 6

6 7

6 8

7 9

8 7

样例输出

3

标签

ceoi2005


对于每一个连通分量记录其中有几个a类点和几个b类点。

然后对于每一条割边分成的两个连通分量判一下是不是有没有a类点或者没有b类点的就行了。

代码:

#include<bits/stdc++.h>
#define N 100005
#define M 1000005
using namespace std;
int first[N],dfn[N],low[N],dfs_blocks,n,m,k,l,cnt=0,cnta[N],cntb[N],ans=0;
struct edge{int v,next;}e[M<<1];
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
inline void add(int u,int v){e[++cnt].v=v,e[cnt].next=first[u],first[u]=cnt;}
inline int min(int a,int b){return a<b?a:b;}
inline void swap(int&a,int&b){a^=b,b^=a,a^=b;}
inline void tarjan(int p,int fa){
	dfn[p]=low[p]=++dfs_blocks;
	for(int i=first[p];i;i=e[i].next){
		int v=e[i].v;
		if(v==fa)continue;
		if(dfn[v]){low[p]=min(low[p],low[v]);continue;}
		tarjan(v,p),low[p]=min(low[p],low[v]);
		if(low[v]>dfn[p])if(!cnta[v]||!cntb[v]||cnta[v]==k||cntb[v]==l)++ans;
		cnta[p]+=cnta[v],cntb[p]+=cntb[v];
	}
}
int main(){
	n=read(),m=read(),k=read(),l=read();
	for(int i=1;i<=k;++i)cnta[read()]=1;
	for(int i=1;i<=l;++i)cntb[read()]=1;
	for(int i=1;i<=m;++i){
		int u=read(),v=read();
		add(u,v),add(v,u);
	}
	tarjan(1,0);
	cout<<ans;
	return 0;
}

2018.09.23 关键网线(tarjan)的更多相关文章

  1. 2018.09.23 codeforces 1053B. Vasya and Good Sequences(前缀和)

    传送门 考试的时候卡了一会儿. 显然这个答案只跟二进制位为1的数量有关. 还有一个显然的结论. 对于一个区间[l,r][l,r][l,r],如果其中单个数二进制位为1的数量最大值不到区间所有数二进制位 ...

  2. 2018.09.23 codeforces 1053A. In Search of an Easy Problem(gcd)

    传送门 今天的签到题. 有一个很显然的结论,gcd(n∗m,k)≤2gcd(n*m,k)\le 2gcd(n∗m,k)≤2. 本蒟蒻是用的行列式求三角形面积证明的. 如果满足这个条件,就可以直接构造出 ...

  3. 2018.09.23 atcoder Boxes and Candies(贪心)

    传送门 一道挺有意思的贪心. 从1到n依次满足条件. 注意要特判第一个数已经大于x的情况. 但是如何贪心吃呢? 如果靠左的数没有越界,我们吃靠右的数. 原因是下一次靠右的数就会成为靠左的数,相当于多贡 ...

  4. 2018.09.23 bzoj1076: [SCOI2008]奖励关(期望+状压dp)

    传送门 一道神奇的期望状压dp. 用f[i][j]f[i][j]f[i][j]表示目前在第i轮已选取物品状态为j,从现在到第k轮能得到的最大贡献. 如果我们从前向后推有可能会遇到不合法的情况. 所以我 ...

  5. 2018.09.23 bzoj3143: [Hnoi2013]游走(dp+高斯消元)

    传送门 显然只需要求出所有边被经过的期望次数,然后贪心把边权小的边定城大的编号. 所以如何求出所有边被经过的期望次数? 显然这只跟边连接的两个点有关. 于是我们只需要求出两个点被经过的期望次数. 对于 ...

  6. 2018.09.23 孙悟空大战鲤鱼精(单调队列优化dp)

    描述 孙悟空大战鲤鱼精,孙悟空在通天河遇到鲤鱼精,他嫉恶如仇,看见妖精就手痒(忘了自己是妖精).但是鲤鱼精知道孙悟空的厉害,在孙悟空来到通天河,鲤鱼精就跑到了河对面.于是孙悟空就去追鲤鱼精. 我们可以 ...

  7. 2018.09.23模拟总结(T2)

    T1,T3我就不说啦,反正也不会.主要想讲的是T2. T2用了一个神奇的算法:折半搜索. 因为这个坑爹的数据范围告诉我们暴搜或是状压会TLE,而一半刚好能卡过去. 折半搜索其实跟暴搜没什么区别,就是折 ...

  8. 2018.09.22 上海大学技术分享 - An Introduction To Go Programming Language

    老实说笔者学习 Go 的时间并不长,积淀也不深厚,这次因缘巧合,同组的同事以前是上海大学的开源社区推动者之一,同时我们也抱着部分宣传公司和技术分享的意图,更进一步的,也是对所学做一个总结,所以拟定了这 ...

  9. Lean Data Innovation Sharing Salon(2018.09.15)

    时间:2018.09.15地点:北京国华投资大厦

随机推荐

  1. leetcode134

    class Solution { public: inline int get_next(int idx, int size) { ? : idx+; } int aux(int idx, vecto ...

  2. JS数组对象的方法

    concat 返回一个新数组,这个数组是由两个或更多数组组合而成的 array.concat(b,c); join 返回字符串值,其中包括了连接到一起的数组的所有元素,元素由指定分隔符分割开来 arr ...

  3. Producer-consumer problem in Python

    from: http://agiliq.com/blog/2013/10/producer-consumer-problem-in-python/ By : Akshar Raaj We will s ...

  4. Qt使用MSVC编译器不能正确显示中文的解决方案

    用VisualStudio做为IDE,使用Qt框架,显示中文,会出现乱码的情况. 原因:MSVC编译器虽然可以正常编译带BOM的UTF-8编译的源文件,但是生成的可执行文件的编码是Windows本地字 ...

  5. Eclipse 安装JavaEE插件

    Oxygen版Eclipse 导入项目会自动安装你项目需要的一些插件,但是有时候会安装失败,需要手动安装: 这里以Dynamic Web Project项目为例 打开Eclipse,依次选择Help ...

  6. 通过IP地址进行精准定位

    可能会遇到这样的问题,服务器或者系统经常被扫描,通过IP地址我们只能查到某一个市级城市,如下图: 当我们想具体到街道甚至门牌号,该怎么办??? 偶然间发现百度地图有高精度IP定位API的接口,通过该接 ...

  7. 不用登陆密码也能进路由器,适用于TP、磊科、腾达

    结合wooyun提供的腾达COOKIE漏洞,结合自己的经验,成功进入腾达路由器破解其登陆密码和无线密码. 教程开始: 所用工具:WebCruiser 输入路由网关,出现登陆界面. 选择:COOKIE  ...

  8. homewor

    <jsp;include>动作和指令的区别: 一:执行时间上: <%@ include file=”relativeURI”%>                   是在翻译阶 ...

  9. iis配置asp.net常见验证失败问题解决方案

    很多朋友在用IIS6架网站的时候遇到不少问题,而这些问题有些在过去的IIS5里面就遇到过,有些是新出来的,俺忙活了一下午,做 了很多次试验,结合以前的排错经验,做出了这个总结,希望能给大家帮上忙:) ...

  10. 梯度下降法】三:学习率衰减因子(decay)的原理与Python

    http://www.41443.com/HTML/Python/20161027/512492.html