Hive学习之路 (十七)Hive分析窗口函数(五) GROUPING SETS、GROUPING__ID、CUBE和ROLLUP
概述
GROUPING SETS,GROUPING__ID,CUBE,ROLLUP
这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。
数据准备
数据格式
2015-03,2015-03-10,cookie1
2015-03,2015-03-10,cookie5
2015-03,2015-03-12,cookie7
2015-04,2015-04-12,cookie3
2015-04,2015-04-13,cookie2
2015-04,2015-04-13,cookie4
2015-04,2015-04-16,cookie4
2015-03,2015-03-10,cookie2
2015-03,2015-03-10,cookie3
2015-04,2015-04-12,cookie5
2015-04,2015-04-13,cookie6
2015-04,2015-04-15,cookie3
2015-04,2015-04-15,cookie2
2015-04,2015-04-16,cookie1
创建表
use cookie;
drop table if exists cookie5;
create table cookie5(month string, day string, cookieid string)
row format delimited fields terminated by ',';
load data local inpath "/home/hadoop/cookie5.txt" into table cookie5;
select * from cookie5;

玩一玩GROUPING SETS和GROUPING__ID
说明
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL
GROUPING__ID,表示结果属于哪一个分组集合。
查询语句
select
month,
day,
count(distinct cookieid) as uv,
GROUPING__ID
from cookie.cookie5
group by month,day
grouping sets (month,day)
order by GROUPING__ID;
等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day
查询结果

结果说明
第一列是按照month进行分组
第二列是按照day进行分组
第三列是按照month或day分组是,统计这一组有几个不同的cookieid
第四列grouping_id表示这一组结果属于哪个分组集合,根据grouping sets中的分组条件month,day,1是代表month,2是代表day
再比如
SELECT month, day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM cookie5
GROUP BY month,day
GROUPING SETS (month,day,(month,day))
ORDER BY GROUPING__ID;
等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day

玩一玩CUBE
说明
根据GROUP BY的维度的所有组合进行聚合
查询语句
SELECT month, day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM cookie5
GROUP BY month,day
WITH CUBE
ORDER BY GROUPING__ID;
等价于
SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM cookie5
UNION ALL
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day
查询结果

玩一玩ROLLUP
说明
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合
查询语句
-- 比如,以month维度进行层级聚合
SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID
FROM cookie5
GROUP BY month,day WITH ROLLUP ORDER BY GROUPING__ID;
可以实现这样的上钻过程:
月天的UV->月的UV->总UV

--把month和day调换顺序,则以day维度进行层级聚合:
可以实现这样的上钻过程:
天月的UV->天的UV->总UV
(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)

Hive学习之路 (十七)Hive分析窗口函数(五) GROUPING SETS、GROUPING__ID、CUBE和ROLLUP的更多相关文章
- Hive高阶聚合函数 GROUPING SETS、Cube、Rollup
-- GROUPING SETS作为GROUP BY的子句,允许开发人员在GROUP BY语句后面指定多个统计选项,可以简单理解为多条group by语句通过union all把查询结果聚合起来结合起 ...
- Hive函数:GROUPING SETS,GROUPING__ID,CUBE,ROLLUP
参考:lxw大数据田地:http://lxw1234.com/archives/2015/04/193.htm 数据准备: CREATE EXTERNAL TABLE test_data ( mont ...
- [转帖]Hive学习之路 (一)Hive初识
Hive学习之路 (一)Hive初识 https://www.cnblogs.com/qingyunzong/p/8707885.html 讨论QQ:1586558083 目录 Hive 简介 什么是 ...
- Hive学习之路 (二十)Hive 执行过程实例分析
一.Hive 执行过程概述 1.概述 (1) Hive 将 HQL 转换成一组操作符(Operator),比如 GroupByOperator, JoinOperator 等 (2)操作符 Opera ...
- Hive学习之路 (一)Hive初识
Hive 简介 什么是Hive 1.Hive 由 Facebook 实现并开源 2.是基于 Hadoop 的一个数据仓库工具 3.可以将结构化的数据映射为一张数据库表 4.并提供 HQL(Hive S ...
- Hive学习之路 (二十一)Hive 优化策略
一.Hadoop 框架计算特性 1.数据量大不是问题,数据倾斜是个问题 2.jobs 数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次 汇总,产生十几个 jobs,耗时很长.原 ...
- Hive学习之路 (十一)Hive的5个面试题
一.求单月访问次数和总访问次数 1.数据说明 数据字段说明 用户名,月份,访问次数 数据格式 A,, A,, B,, A,, B,, A,, A,, A,, B,, B,, A,, A,, B,, B ...
- Hive 学习之路(八)—— Hive 数据查询详解
一.数据准备 为了演示查询操作,这里需要预先创建三张表,并加载测试数据. 数据文件emp.txt和dept.txt可以从本仓库的resources目录下载. 1.1 员工表 -- 建表语句 CREAT ...
- Hive学习之路 (二)Hive安装
Hive的下载 下载地址http://mirrors.hust.edu.cn/apache/ 选择合适的Hive版本进行下载,进到stable-2文件夹可以看到稳定的2.x的版本是2.3.3 Hive ...
随机推荐
- 撩课-Web大前端每天5道面试题-Day24
1.下面的代码将输出什么? ; i < ; i++) { setTimeout(function() { console.log(i); }, i * ); } 闭包在这里能起什么作用? 上面的 ...
- 鼠标键盘失灵对策(Windows8.1)
Win8.1虽然比Windows Server 2008R2开关机速度快好多.可惜用了一年后发现Win8.1 大bug. 鼠标键盘老是失灵... 对应方案: 1. 将鼠标键盘的USB插头更换位置,比如 ...
- mysql行转列,列转行
行转列,列转行是我们在开发过程中经常碰到的问题.行转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 2005 新增的运算符PIVOT来实现.用传统的方法,比较好理解.层次清 ...
- linux 上传下载 以及SCP命令
1. scp 用法 scp就是用来在服务器和本地之间传文件的linux命令还有其他的方法,比如装ftp服务器 copy 本地的档案到远程的机器上 scp /Desktop/test.conf 用户名@ ...
- Hive Metastore 连接报错
背景 项目中需要通过一些自定义的组件来操控hive的元数据,于是使用了remote方式来存储hive元数据,使用一个服务后台作为gateway,由它来控制hive元数据. 现象 在windows上连接 ...
- Android手动显示和隐藏软键盘
1.方法一(如果输入法在窗口上已经显示,则隐藏,反之则显示) InputMethodManager imm = (InputMethodManager) getSystemService(Contex ...
- Spring Boot—06集成前端模板thymeleaf
Spring Boot建议使用这些模板引擎,避免使用JSP,若一定要使用JSP将无法实现Spring Boot的多种特性 pom.xml <dependency> <groupId& ...
- CentOS7系列--1.3CentOS7用户管理
CentOS7用户管理 1. 添加用户 [root@centos7 ~]# useradd jack [root@centos7 ~]# passwd jack Changing password f ...
- 一文详解 Linux 系统常用监控工具(top,htop,iotop,iftop)
概 述 本文主要记录一下 Linux 系统上一些常用的系统监控工具,非常好用.正所谓磨刀不误砍柴工,花点时间总结一下是值得的! 本文内容脑图如下: top 命令 top 命令我想大家都挺熟悉吧! ...
- CCSUOJ评测系统——第一次scrum冲刺
1.第一次冲刺任务安排 对Github上的HUSTOJ开源项目进行Fork,搭建基本环境 2.用户需求 ①基本功能显示在首页 ②能够提交题目并判题,并对自己所提交的题目正确性进行反馈,能够查看自己提交 ...