S-Nim

Time Limit : 5000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 2   Accepted Submission(s) : 1
Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

 
Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
 
Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
 
Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
Sample Output
LWW
WWL
 
 /*
题意:第二次做题,题意完全忘记。
前面都是背景,告诉你Nim是赢和输的规则。
后面改成了:选的数字是规定的。 数字是改变的,用打表划不来!
数字大小到10000,所以Hash只要到100就可以了。 SG的求法有两种,
1.是打表的。
参考http://www.cnblogs.com/tom987690183/archive/2013/05/30/3108564.html
2.是单点求取的。和记忆化搜索很相似。
这一题是单点的。
*/ #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; int SG[];
int arry[]; int make_GetSG(int n)//求单点的。
{
int i,tmp,Hash[]={};//后继的大小开sqrt(N);
for(i=;i<=arry[];i++)
{
if(arry[i]>n)
break;
tmp=n-arry[i];
if(SG[tmp]==-)
SG[tmp]=make_GetSG(tmp);
Hash[SG[tmp]]=;
}
for(i=;;i++)
if(Hash[i]==)
return i;
} void make_ini(int m)
{
int i,j,k,n,x;
memset(SG,-,sizeof(SG));
while(m--)
{
scanf("%d",&n);
k=;
for(i=;i<=n;i++)
{
scanf("%d",&x);
k=k^make_GetSG(x);
}
if(k==)printf("L");
else printf("W");
}
printf("\n");
} int main()
{
int k,m,i;
while(scanf("%d",&k)>)
{
if(k==)break;
for(i=;i<=k;i++)
scanf("%d",&arry[i]);
arry[]=k;
sort(arry+,arry++k);
scanf("%d",&m);
make_ini(m);
}
return ;
}

HDU 1016 S-Nim ----SG求值的更多相关文章

  1. hdu 1237 简单计算器 (表达式求值)【stack】

    <题目链接> 题目大意: 读入一个只包含 +, -, *, / 的非负整数计算表达式,计算该表达式的值.  Input测试输入包含若干测试用例,每个测试用例占一行,每行不超过200个字符, ...

  2. hdu 5124(区间更新+单点求值+离散化)

    lines Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  3. HDU 1729 类NIM 求SG

    每次有n个盒子,每个盒子有容量上限,每次操作可以放入石头,数量为不超过当前盒子中数量的平方,不能操作者输. 一个盒子算一个子游戏. 对于一个盒子其容量为s,当前石子数为x,那么如果有a满足 $a \t ...

  4. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  5. hdu 4192 (表达式求值)

    <题目链接> <转载于 >>>  > 题目大意: 给你n个数,和一个最终的结果,再给你一个含有n个不同变量的式子,问你这个式子最终能否得到指定的答案. 解题分 ...

  6. 随手练——HDU 1237 表达式求值(输入格式典型)

    坑了老子半天,结果是 float 范围不够!!! 基本思想: 开一个符号栈,一个数字栈: 碰到数字就入栈,碰到符号就与栈顶符号进行对比,如果当前符号优先级小于栈顶符号,数字栈弹出两个数进行栈顶符号运算 ...

  7. HDU 2176 基础NIM 输出方案

    普通的NIM,然后问先手必胜第一次操作后的所有局面. 对于一个必胜局面只要转变局面SG值为必败(SG=0)留给后手就行了. /** @Date : 2017-10-13 21:39:13 * @Fil ...

  8. Matrix Chain Multiplication(表达式求值用栈操作)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/100 ...

  9. 洛谷 P1981 表达式求值

    P1981 表达式求值 题目描述 给定一个只包含加法和乘法的算术表达式,请你编程计算表达式的值. 输入输出格式 输入格式: 输入文件为 expr.in. 输入仅有一行,为需要你计算的表达式,表达式中只 ...

随机推荐

  1. JAVA 定时器时间格式

    格式: [秒] [分] [小时] [日] [月] [周] [年] 通配符说明: \*:表示所有值.例如:在分的字段上设置"\*",表示每一分钟都会触发. ?:表示不指定值.使用的场 ...

  2. python 模块导入全局变量

    在哪种情况下需要从模块导入全局变量 项目里多个脚本均更改「某一个全局变量」时 全量变量需要实现可配置时 从模块导入全局变量的方法 from test_prokject import global_va ...

  3. MySQL(动态执行SQL)

    day61 防sql注入 delimiter \\ CREATE PROCEDURE p4 ( ), in arg int ) BEGIN set @xo = arg; PREPARE xxx FRO ...

  4. python实战——网络爬虫

    学习网络爬虫的目的: 1,可以私人定制一个搜索引擎,可以深层次的了解搜索引擎的工作原理. 2,大数据时代,要进行数据分析,首先要有数据源,学习爬虫,可以让我们获取更多的数据. 3,从业人员可以可好的利 ...

  5. Tomcat几种出错方法

    1.  Several ports (8005, 8089, 8009) required by Tomcat v8.0 Server at localhost are already in use. ...

  6. jdbc连接2(不可以注入)

    public void login1(String username, String password) throws ClassNotFoundException, SQLException { / ...

  7. 2. Linear Model

    1. 基本形式 给定由$d$个属性描述的示例 $\textbf{x} =(x_1;x_2;...,x_n)$,其中$x_i$是$x$在第$i$个属性上的取值,线性模型(linear model)试图学 ...

  8. 布隆过滤器redis缓存

    Bloom Filter布隆过滤器算法背景如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构 ...

  9. 48位MAC转化为唯一的128位IPV6地址

    根据EUI_64规范,一个MAC地址生成唯一的一个IPV6地址. ①.反转MAC的第七位为1. ②.在24bit后加入FFFE. ③.在最前面加上FE80::. 示例:

  10. RocketMQ-Filer

    一.搭建RocketMQ集群 我搭建的是2-master no slave模式,所以在${rocketmq}/conf/2m-noslave/下的 brokder-*.properties 中添加 f ...