Luogu 1070 道路游戏
看完题面想了一会发现只会写$n^3$,愣了一会才想出了单调队列优化的做法。
90分算法:
设$f_{i, j, k}$表示第$i$分钟在第$j$座城市已经走了$k$步的最大价值,转移显然,时间复杂度$O(n^3)$。
但是我没有实现它。
100分算法:
思考一下最终的答案是怎样选出来的,我们把矩阵画出来:

发现题目可以转化为在这个矩阵上选若干个斜对角线,使得每一列都有且仅有一个被选到,最后获得的总价值为所有选到的格子上的值再减去所有斜对角线开始的格子对应的代价,使这个总价值最大。
设$f_{i, j}$表示到第$i$分钟,当前再$j$能选到的最大价值,那么发现最多只能从$1-p$层上转移过来。
$f_{i, j} = max(max(f_{i - k,o}) + calc(i- k, i) - cost_{pos(j, k)}) (1 \leq k \leq p - 1) (1 \leq o \leq n)$
$calc(i, j)$表示这一条对角线(从$i$层到$j$层)上的价值总和,可以通过斜线上预处理前缀和得到,$pos(i, j)$表示$i$上移$j$层所到达的纵坐标,$cost_{i}$表示在第$i$个城市买机器人的代价。
那么对每一条斜的对角线维护一个单调队列即可。
时间复杂度$O(n^2)$。
我还是没有实现它。
介绍一种dalao的思路。(第二个id叫Ghastlcon)的大佬,他的Luogu博客中这篇文章看不了了……
有一个小trick就是把下标从$0$到$n - 1$编号,这样子上面定义的$pos(i, j) = ((i - j) \% n + n) \% n$,这样子做前缀和的时候也比较方便。
其实我们发现$f$的第二维是没r用的,所以可以直接拿掉,因为在一个结束的位置并不影响在下一个开始的位置,我们要的只是这个最大值。
把前缀和$g$完整地写出来,有:$f_{i} = max(f_{j} + g_{i} - g_{j - 1} - cost_{j}) (1 \leq i - j \leq p - 1)$。
可以把之后与$i$有关的项拿到外面来,就可以用单调队列优化了。
时间复杂度$O(n^2)$。
Code:
#include <cstdio>
#include <cstring>
using namespace std; const int N = ; int n, m, k, a[N], g[N][N], f[N]; inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} struct PriQueue {
int lst[N], pos[N], l, r; inline void init() {
l = , r = ;
} inline void push(int x, int val) {
for(; l <= r && lst[r] < val; --r);
lst[++r] = val, pos[r] = x;
} inline void pop(int p) {
for(; l <= r && pos[l] < p; ++l);
} } q[N]; inline int pos(int x, int len) {
return ((x - len) % n + n) % n;
} inline void chkMax(int &x, int y) {
if(y > x) x = y;
} int main() {
read(n), read(m), read(k);
for(int i = ; i < n; i++)
for(int j = ; j <= m; j++)
read(g[i][j]);
for(int i = ; i < n; i++) read(a[i]); for(int j = ; j <= m; j++)
for(int i = ; i < n; i++)
g[i][j] += g[(i + n - ) % n][j - ]; for(int i = ; i < n; i++) q[i].init(); for(int i = ; i < n; i++) {
int now = pos(i, -);
q[now].push(, -a[i]);
} memset(f, , sizeof(f)); f[] = ;
for(int i = ; i <= m; i++) {
for(int j = ; j < n; j++) {
int now = pos(j, i - );
chkMax(f[i], q[now].lst[q[now].l] + g[pos(j, )][i]);
} for(int j = ; j < n; j++) {
int now = pos(j, i - );
q[now].pop(i - k + );
q[now].push(i, f[i] - g[pos(j, )][i] - a[j]);
}
} printf("%d\n", f[m]);
return ;
}
Luogu 1070 道路游戏的更多相关文章
- [luogu 1070]道路游戏(NOIP2009T4)
题目链接 题解: 题目描述好长啊.... 大概就是设一下$f[i]$表示第i秒的最大价值 首先枚举时间,然后因为机器人这一秒无论在哪里都是有可能的,所以要枚举一下每个点,又因为最多走p秒所以再枚举一下 ...
- [luogu]P1070 道路游戏[DP]
[luogu]P1070 道路游戏 题目描述小新正在玩一个简单的电脑游戏.游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针 ...
- luogu P1070 道路游戏
传送门 这里设\(f_i\)表示时刻\(i\)的答案 转移的话在\([i-p+1,i-1]\)之间枚举j,然后考虑从哪个点走过来 复杂度为\(O(n^3)\) // luogu-judger-enab ...
- 洛谷 P1070 道路游戏 解题报告
P1070 道路游戏 题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有\(n\)个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依 ...
- 1070 Bash游戏 V4
1070 Bash游戏 V4 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次拿的数量最少1个,最多不超过对手上 ...
- 1070 Bash 游戏 V4
传送门 1070 Bash游戏 V4 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次拿的数量最少1个,最多 ...
- 洛谷P1070 道路游戏
P1070 道路游戏 题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依次将 ...
- 洛谷 P1070 道路游戏 DP
P1070 道路游戏 题意: 有一个环,环上有n个工厂,每个工厂可以生产价格为x的零钱收割机器人,每个机器人在购买后可以沿着环最多走p条边,一秒走一条,每条边不同时间上出现的金币是不同的,问如何安排购 ...
- 51 Nod 1070 Bash游戏v4(斐波那契博弈)
这题的证明看不太懂,日后再重做... 1070 Bash游戏 V4 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 有一堆石子共有N个.A B两个 ...
随机推荐
- 〖Python〗-- Django的Form组件
[Django的Form组件] Django的Form主要具有一下几大功能: 生成HTML标签 验证用户数据(显示错误信息) HTML Form提交保留上次提交数据 初始化页面显示内容 Form类的使 ...
- 报错:ORA-02264
创建表时报错ORA-02264:名称已被一个现有约束条件占用 查询约束名称“PK_DATASOUCE”,然后删除. SELECT a.* FROM user_constraints a where c ...
- 3.4 SpringBoot发送邮件
spring官方提供了spring-boot-starter-mail来整合邮件发送功能,本质上还是利用了JavaMailSender类. 首先我们要在项目中引入相关依赖 <parent & ...
- 关于QT内部16进制、十进制、QByteArray,QString
QT里面的数据转化成十六进制比较麻烦,其他的int或者byte等型都有专门的函数,而十六进制没有特定的函数去转化,这我在具体的项目中已经解决(参考网上大神)->小项目程序 QT里面虽然有什么QS ...
- 查看虚拟机CENTOS7 的 IP 地址和命令
用于生产环境下 安装CENTOS7 太费时间, 研究阶段 放在虚拟机里面 是最好的选择: 但是安装完毕后 就出现问题 无法使用IFCONFIG : 毕竟 内核不一样 首先我们登录操作系统 用 ...
- 最近玩的centos7.3用的防火墙转载
CentOS 7 firewalld使用简介 1.firewalld简介 firewalld是centos7的一大特性,最大的好处有两个:支持动态更新,不用重启服务:第二个就是加入了防火墙的“zone ...
- myeclipse 保存失败
Save FailedCompilation unit name must end with .java, or one of the registered Java-like extensions ...
- IP Editor IP控件
HWND hIpEdit; void __fastcall TForm2::FormCreate(TObject *Sender) { hIpEdit = CreateWindow(WC_IPADDR ...
- J2SE 8的Lambda --- 语法
语法例子 LambdaGrammarTest lambdaTest = new LambdaGrammarTest(); // 1. 能够推导出类型的,可以不写类型 String[] planets ...
- Activity服务类-7 RepositoryService服务类
Activity服务类-1 RepositoryService服务类一共47个接口1.创建部署//开始创建一个新的部署.DeploymentBuilder createDeployment(); 2. ...