【原创 深度学习与TensorFlow 动手实践系列 - 2】第二课:传统神经网络
第二课 传统神经网络

《深度学习》整体结构:
线性回归 -> 神经网络 -> 卷积神经网络(CNN)-> 循环神经网络(RNN)- LSTM
目标分类(人脸识别,物品识别,场景识别,文字识别),目标检测(安防,自动驾驶),视频分类(视频检索),语句生成(自动翻译,智能对话)

提纲:
1. 神经网络起源:线性回归
2. 从线性到非线性
3. 神经网络的构建
4. 神经网络的“配件”

期待目标:
1. 了解从线性到非线性回归的转化
2. 明白如何构建神经网络,了解不同激励函数的区别联系
3. 掌握“配件”对神经网络性能的影响(损失函数 Cost,学习率 Learning Rate,动量,过拟合),会“调参”
4. 明白本节所有的“面试题”


线性回归:
1. 概念:线性关系来描述输入到输出的映射关系
2. 应用场景:网络分析,银行风险分析,基金股价预测,天气预报

线性回归:
一个线性回归问题
目标方程:y = ax1 + bx2 + cx3 + d
参数: m = [a, b, c, d]
数据:[(x1,1, x2,1,x3,1), (), (), ()]
预测:yt = ax1,t + bx2,t + cx3,t + d
目标:minimize (yt - yt)
总结:线性函数是一维函数,y = ax1 + bx2 + cx3 + d
现在要计算最佳参数 m = [a, b, c, d]
给定数据,计算出预测值,预测值与真实值计算Cost,当Cost最小的时候计算出 m = [a, b, c, d]

优化方法:梯度下降法
模型参数
当前 m0 = [a0, b0, c0, d0]
每一步 m?
参数 m = [a, b, c, d]

梯度下降:梯度计算
Loss = ax1 + bx2 + cx3 + d -y
梯度下降:参数更新

梯度下降法总结:
1. 随机初始化参数
开启循环 t= 0, 1, 2
带入数据求出结果 yt
与真值比较得到loss = y - yt
对各个变量求导得到 m
更新变量 m



线性回归的局限性:线性回归能够清楚的描述分割线性分布的数据,对非线性分布的数据描述较弱


非线性激励
考量标准:
1. 正向对输入的调整
2. 反向梯度损失












神经网络构建
神经元的“并联”和“串联”
从第一层神经网络到最终输出,每一个神经元的数值由前一层神经元数值,神经元参数W,b以及激励函数共同决定第n+1层,第k个神经元的方程,可由公式表示为:
在这里,m表示第n层神经网络的宽度,n为当前神经网络的深度
并联:深度,串联:宽度



MINIST 神经网络分类:
course_2_tf_nn.py
结构变化影响:
1. “并联”宽度影响
2. “串联”层数影响
3. Dropout
4. Learning rate


1. 损失函数 - Loss
影响深度学习性能最重要因素之一。是外部世界对神经网络模型训练的直接指导。
合适的损失函数能够确保深度学习模型收敛
设计合适的损失函数是研究工作的主要内容之一















总结:
1. 神经网络起源:线性回归
2. 从线性到非线性
3. 神经网络的构建
4. 神经网络的“配件”
下节课预告:链式规则反向求导,SGD优化原理,卷积神经网络(CNN)各个layers介绍
第二节课的代码
https://github.com/wiibrew/DeepLearningCourseCodes/blob/master/course_2_tf_nn.py
https://github.com/wiibrew/DeepLearningCourseCodes/blob/master/course_2_tf_nn.ipynb
具体通过TensorFlow构建神经网络的过程,通过Pycharm和 Python Notebook来完成实验,调参还部署很熟练。




TensorFlow 对数据进行简单的可视化实验:
http://playground.tensorflow.org/

【原创 深度学习与TensorFlow 动手实践系列 - 2】第二课:传统神经网络的更多相关文章
- 【原创 深度学习与TensorFlow 动手实践系列 - 4】第四课:卷积神经网络 - 高级篇
[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleN ...
- 【原创 深度学习与TensorFlow 动手实践系列 - 3】第三课:卷积神经网络 - 基础篇
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实 ...
- 【原创 深度学习与TensorFlow 动手实践系列 - 1】第一课:深度学习总体介绍
最近一直在研究机器学习,看过两本机器学习的书,然后又看到深度学习,对深度学习产生了浓厚的兴趣,希望短时间内可以做到深度学习的入门和实践,因此写一个深度学习系列吧,通过实践来掌握<深度学习> ...
- 分享《机器学习实战基于Scikit-Learn和TensorFlow》中英文PDF源代码+《深度学习之TensorFlow入门原理与进阶实战》PDF+源代码
下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+ ...
- 深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装
一.硬件采购 近年来,人工智能AI越来越多被人们所了解,尤其是AlphaGo的人机围棋大战之后,机器学习的热潮也随之高涨.最近,公司采购了几批设备,通过深度学习(TensorFlow)来研究金融行业相 ...
- ML平台_微博深度学习平台架构和实践
( 转载至: http://www.36dsj.com/archives/98977) 随着人工神经网络算法的成熟.GPU计算能力的提升,深度学习在众多领域都取得了重大突破.本文介绍了微博引入深度学 ...
- 深度学习之TensorFlow构建神经网络层
深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可 ...
- 深度学习(TensorFlow)环境搭建:(三)Ubuntu16.04+CUDA8.0+cuDNN7+Anaconda4.4+Python3.6+TensorFlow1.3
紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把N ...
- 深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动
前几天把刚拿到了2台GPU机器组装好了,也写了篇硬件配置清单的文章——<深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装>.这两台也在安装Ubuntu 16.04和108 ...
随机推荐
- Windows下的Hadoop安装(本地模式)
时隔许久的博客.. 系统为Windows 10,Hadoop版本2.8.3. 虽然之前已经在Linux虚拟机上成功运行了Hadoop,但我还是在Windows上编码更加习惯,所以尝试了在Window上 ...
- class关键字
class的数据类型为function,可以看做构造函数的另一种写法.事实上,类的所有方法都定义在类的prototype属性上面.一.声明class class Animal { constructo ...
- Redis自学笔记:3.3入门-散列类型
3.3散列类型 3.3.1介绍 散列类型不能嵌套其他数据类型,一个散列类型可以包含至多232-1个字段 散列类型适合存储对象:使用对象类别和ID构成键名,使用字段表示对象的数据, 而字段值则存储属性值 ...
- 把存储过程结果集SELECT INTO到临时表
把存储过程结果集SELECT INTO到临时表 在开发过程中,很多时候要把结果集存放到临时表中,常用的方法有两种. 一. SELECT INTO . 使用select into会自动生成临时表,不需要 ...
- LOJ.6053.简单的函数(Min_25筛)
题目链接 Min_25筛见这里: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushuyu/p/91 ...
- Codeforces.1082E.Increasing Frequency(思路)
题目链接 \(Description\) 给定\(n\)个数.你可以选择一段区间将它们都加上或减去任意一个数.求最终序列中最多能有多少个数等于给定的\(C\). \(n\leq5\times10^5\ ...
- Ajax状态值及状态码整理
1- AJAX状态值与状态码区别 AJAX状态值是指,运行AJAX所经历过的几种状态,无论访问是否成功都将响应的步骤,可以理解成为AJAX运行步骤.如:正在发送,正在响应等,由AJAX对象与服务器交互 ...
- BZOJ2647 : [Neerc2011]Journey
$|x|+|y|=\max(x+y,x-y,-x+y,-x-y)$,设$f[i][j]$表示在$(0,0)$,朝向方向$j$,执行第$i$条指令后的信息: $cir$:是否陷入循环 $d$:朝向 $x ...
- C++学习笔记56:异常处理
异常处理 异常处理的语法 抛掷异常的程序段 throw表达式: 捕获并处理异常的程序段 try 复合语句 catch(异常声明) 复合语句 catch(异常声明) 复合语句 注意:如果匹配的处理器没有 ...
- Django——信号
django——signal 其实可以理解为django内部的钩子,当某一个事件发生时,其它程序会触发并对其作出相关反应,通过signal回调处理函数(receivers),从而更大程度的解耦我们的项 ...