题目描述

由于对Farmer John的领导感到极其不悦,奶牛们退出了农场,组建了奶牛议会。议会以“每头牛 都可以获得自己想要的”为原则,建立了下面的投票系统: M只到场的奶牛 (1 <= M <= 4000) 会给N个议案投票(1 <= N <= 1,000) 。每只 奶牛会对恰好两个议案 B_i and C_i (1 <= B_i <= N; 1 <= C_i <= N)投 出“是”或“否”(输入文件中的'Y'和'N')。他们的投票结果分别为VB_i (VB_i in {'Y', 'N'}) and VC_i (VC_i in {'Y', 'N'})。 最后,议案会以如下的方式决定:每只奶牛投出的两票中至少有一票和最终结果相符合。 例如Bessie给议案1投了赞成'Y',给议案2投了反对'N',那么在任何合法的议案通过 方案中,必须满足议案1必须是'Y'或者议案2必须是'N'(或者同时满足)。 给出每只奶牛的投票,你的工作是确定哪些议案可以通过,哪些不能。如果不存在这样一个方案, 输出"IMPOSSIBLE"。如果至少有一个解,输出: Y 如果在每个解中,这个议案都必须通过 N 如果在每个解中,这个议案都必须驳回 ? 如果有的解这个议案可以通过,有的解中这个议案会被驳回 考虑如下的投票集合: - - - - - 议案 - - - - - 1 2 3 奶牛 1 YES NO 奶牛 2 NO NO 奶牛 3 YES YES 奶牛 4 YES YES 下面是两个可能的解: * 议案 1 通过(满足奶牛1,3,4) * 议案 2 驳回(满足奶牛2) * 议案 3 可以通过也可以驳回(这就是有两个解的原因) 事实上,上面的问题也只有两个解。所以,输出的答案如下: YN?

输入

* 第1行:两个空格隔开的整数:N和M * 第2到M+1行:第i+1行描述第i只奶牛的投票方案:B_i, VB_i, C_i, VC_i

输出

* 第1行:一个含有N个字符的串,第i个字符要么是'Y'(第i个议案必须通过),或者是'N' (第i个议案必须驳回),或者是'?'。 如果无解,输出"IMPOSSIBLE"。

样例输入

3 4
1 Y 2 N
1 N 2 N
1 Y 3 Y
1 Y 2 Y

样例输出

YN?
 
2-SAT模板题,对于一个奶牛的两个投票方案,如果第一个取反(也就是假设这个议案与这头奶牛的投票情况不同)那么第二个一定通过,反过来如果第二个取反,那么第一个一定通过,这样就能连出2n条有向边,对于一条边x->y表示如果选了x就一定要选y。对于每个议案分别枚举它通过或不通过然后dfs并将dfs到的点标记,如果发现在一次dfs后有一个议案表示通过和不通过的点都被标记,那么表示当前枚举的那个议案的情况不可行。将所有议案的所有情况都枚举之后就能知道每个议案的两种情况哪个可行,如果一个议案两个都不可行就输出无解,如果两个都可行就输出'?',剩下的对应输出'Y'或'N'。可以将连完边后的图tarjan缩点,这样可以保证时间复杂度。
没用tarjan缩点的代码。

#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<queue>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int a,b;
char s[2];
char t[2];
int ans[2010];
int to[8010];
int head[2010];
int next[8010];
int vis[2010];
int tot;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x)
{
if(vis[x])
{
return ;
}
vis[x]=1;
for(int i=head[x];i;i=next[i])
{
dfs(to[i]);
}
}
bool check(int x)
{
memset(vis,0,sizeof(vis));
dfs(x);
for(int i=0;i<n;i++)
{
if(vis[i<<1]&&vis[i<<1|1])
{
return 0;
}
}
return 1;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%s%d%s",&a,s,&b,t);
a=(a-1)<<1;
if(s[0]=='N')
{
a|=1;
}
b=(b-1)<<1;
if(t[0]=='N')
{
b|=1;
}
add(a^1,b);
add(b^1,a);
}
for(int i=0;i<n;i++)
{
ans[i<<1]=check(i<<1);
ans[i<<1|1]=check(i<<1|1);
if(!ans[i<<1]&&!ans[i<<1|1])
{
printf("IMPOSSIBLE\n");
return 0;
}
}
for(int i=0;i<n;i++)
{
if(ans[i<<1]&&ans[i<<1|1])
{
printf("?");
}
else if(ans[i<<1])
{
printf("Y");
}
else
{
printf("N");
}
}
}

tarjan缩点的代码。

#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<queue>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int a,b;
char ch1[2];
char ch2[2];
int ans[2010];
int to[8010];
int head[2010];
int next[8010];
int vis[2010];
int tot;
int dep[2010];
int low[2010];
int s[2010];
int v[2010];
int t[2010];
int top;
int num;
int now;
int sum;
vector<int>q[2010];
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void tarjan(int x)
{
t[++top]=x;
v[x]=1;
dep[x]=low[x]=++num;
for(int i=head[x];i;i=next[i])
{
if(!dep[to[i]])
{
tarjan(to[i]);
low[x]=min(low[x],low[to[i]]);
}
else if(v[to[i]])
{
low[x]=min(low[x],dep[to[i]]);
}
}
if(dep[x]==low[x])
{
sum++;
do
{
now=t[top];
top--;
s[now]=sum;
v[now]=0;
}
while(now!=x);
}
}
void dfs(int x)
{
if(vis[x])
{
return ;
}
vis[x]=1;
int len=q[x].size();
for(int i=0;i<len;i++)
{
dfs(q[x][i]);
}
}
bool check(int x)
{
memset(vis,0,sizeof(vis));
dfs(s[x]);
for(int i=0;i<n;i++)
{
if(vis[s[i<<1]]&&vis[s[i<<1|1]])
{
return 0;
}
}
return 1;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%s%d%s",&a,ch1,&b,ch2);
a=(a-1)<<1;
if(ch1[0]=='N')
{
a|=1;
}
b=(b-1)<<1;
if(ch2[0]=='N')
{
b|=1;
}
add(a^1,b);
add(b^1,a);
}
for(int i=0;i<=2*n-2;i++)
{
if(!dep[i])
{
tarjan(i);
}
}
for(int i=0;i<n;i++)
{
if(s[i<<1]==s[i<<1|1])
{
printf("IMPOSSIBLE\n");
return 0;
}
}
for(int i=0;i<=2*n-2;i++)
{
for(int j=head[i];j;j=next[j])
{
if(s[i]!=s[to[j]])
{
q[s[i]].push_back(s[to[j]]);
}
}
}
for(int i=0;i<n;i++)
{
ans[i<<1]=check(i<<1);
ans[i<<1|1]=check(i<<1|1);
if(!ans[i<<1]&&!ans[i<<1|1])
{
printf("IMPOSSIBLE\n");
return 0;
}
}
for(int i=0;i<n;i++)
{
if(ans[i<<1]&&ans[i<<1|1])
{
printf("?");
}
else if(ans[i<<1])
{
printf("Y");
}
else
{
printf("N");
}
}
}

BZOJ2199[Usaco2011 Jan]奶牛议会——2-SAT+tarjan缩点的更多相关文章

  1. BZOJ2199: [Usaco2011 Jan]奶牛议会(2-SAT)

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 559  Solved: 360[Submit][Status][Discuss] Descriptio ...

  2. BZOJ2199: [Usaco2011 Jan]奶牛议会

    趁此机会学了一下2-SAT. 以前的2-SAT都是用并查集写的,只能应用于极小的一部分情况,这次学了一正式的2-SAT,是用一张有向图来表示其依赖关系. 2-SAT的介绍参见刘汝佳<训练指南&g ...

  3. 【BZOJ2199】[Usaco2011 Jan]奶牛议会 2-SAT

    [BZOJ2199][Usaco2011 Jan]奶牛议会 Description 由于对Farmer John的领导感到极其不悦,奶牛们退出了农场,组建了奶牛议会.议会以“每头牛 都可以获得自己想要 ...

  4. BZOJ 2199: [Usaco2011 Jan]奶牛议会

    2199: [Usaco2011 Jan]奶牛议会 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 375  Solved: 241[Submit][S ...

  5. 【BZOJ2199】 [Usaco2011 Jan]奶牛议会

    Description 由于对Farmer John的领导感到极其不悦,奶牛们退出了农场,组建了奶牛议会.议会以“每头牛 都可以获得自己想要的”为原则,建立了下面的投票系统: M只到场的奶牛 (1 & ...

  6. BZOJ.2199.[USACO2011 Jan]奶牛议会(2-SAT)

    题目链接 建边不说了.对于议案'?'的输出用拓扑不好判断,直接对每个议案的结果DFS,看是否会出现矛盾 Tarjan也用不到 //964kb 76ms #include <cstdio> ...

  7. 2199: [Usaco2011 Jan]奶牛议会 2-sat

    链接 https://www.luogu.org/problemnew/show/P3007 https://www.lydsy.com/JudgeOnline/problem.php?id=2199 ...

  8. BZOJ 2199: [Usaco2011 Jan]奶牛议会 [2-SAT 判断解]

    http://www.lydsy.com/JudgeOnline/problem.php?id=2199 题意:裸的2-SAT,但是问每个变量在所有解中是只能为真还是只能为假还是既可以为真又可以为假 ...

  9. bzoj 1823: [JSOI2010]满汉全席 && bzoj 2199 : [Usaco2011 Jan]奶牛议会 2-sat

    noip之前学的内容了,看到题竟然忘了怎么建图了,复习一下. 2-sat 大概是对于每个元素,它有0和1两种选择,必须选一个但不能同时选.这之间又有一些二元关系,比如x&y=1等等... 先把 ...

随机推荐

  1. 如何修改Oracle服务IP地址

    oracle数据库所在的机器更改IP地址后,发现无法连接,解决这个问题,需要修改一下对应的文件: F:\app\zhaohe\product\11.2.0\dbhome_1\NETWORK\ADMIN ...

  2. odoo 订餐系统之消息提醒

    打算入手odoo开发新的系统,先研究下开发的过程是如何的.案例模仿自带的订餐系统,此系统模块不多,但很典型,可以达到联系的目的.先记录下订餐系统消息提醒的开发过程. 1.添加自己的addons目录my ...

  3. python中和生成器协程相关的yield from之最详最强解释,一看就懂(四)

    如果认真读过上文的朋友,应该已经明白了yield from实现的底层generator到caller的上传数据通道是什么了.本文重点讲yield from所实现的caller到coroutine的向下 ...

  4. C# 读取Json配置文件

    今天需要用到读取Json配置文件的helper   结果竟然没找到合适的    微软自己有一个 不过不支持.Net fw 4.0 于是自己在NewTonSoft.Json的基础上  加了点小小的封装  ...

  5. Azure Load Balancer : 简介

    Azure 提供的负载均衡服务叫 Load Balancer,它工作在 ISO 七层模型的第四层,通过分析 IP 层及传输层(TCP/UDP)的流量实现基于 "IP + 端口" 的 ...

  6. 图像数据增强 (Data Augmentation in Computer Vision)

    1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果.在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟 ...

  7. fft的实现

    private static Complex[] FFT1(Complex[] f) { int N=f.length; int power= (int) (Math.log10(N)/Math.lo ...

  8. dxteam团队项目终审报告

    一. 团队成员的简介和个人博客地址 M1阶段 http://www.cnblogs.com/dxteam/p/3991514.html M2阶段 新成员 邓亚梅 http://www.cnblogs. ...

  9. 11.13 Daily Scrum

    今天在实现餐厅列表时,原来使用的百度地图poi搜索接口无法返回餐厅的具体信息. 经过一番周折,找到了一个返回餐厅url的接口.我们调整了一下实现,在点击餐厅列表的某一项点击直接跳到和该餐厅信息有关的网 ...

  10. #个人作业Week2——结对编程对象代码复审

    General 代码能够正确运行,能够正确生成指定数量的题目和答案,并且能够对给出的题目和答案文件进行比对,输出结果. 代码没有非常复杂的逻辑,比较容易理解,但是在缺少注释的情况下有部分代码需要较长时 ...