嘟嘟嘟




题面挺迷的,拿第一个样例说一下:

放第一次亵渎,对答案产生了\(\sum_{i = 1} ^ {10} i ^ {m + 1} - 5 ^ {m + 1}\)的贡献,第二次亵渎产生了\(\sum_{i = 1} ^ {5} i ^ {m + 1}\)的贡献。

反正我们的主要目标就是求\(f(n) = \sum _ {i = 1} ^ {n} i ^ {m + 1}\)。




这东西好像叫做自然数幂和,求法很多,但我现在只会用拉格朗日差值去求。

但是我也不知道为啥,求\(m + 2\)个函数值不对,非得求\(m + 3\)个再去差值。




别忘了每次减去不存在的数的贡献。




差值我用的是\(O(n)\)的求法,这里推荐一个讲的不错的博客:博客

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxm = 55;
const ll mod = 1e9 + 7;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} ll n;
int m;
ll a[maxm]; In ll quickpow(ll a, ll b)
{
ll ret = 1;
for(; b; b >>= 1, a = a * a % mod)
if(b & 1) ret = ret * a % mod;
return ret;
}
ll y[maxm], inv[maxm];
In void init()
{
for(int i = 1; i <= m + 2; ++i) y[i] = (y[i - 1] + quickpow(i, m + 1)) % mod;
ll fac = 1;
for(int i = 1; i <= m + 2; ++i) fac = fac * i % mod;
inv[m + 2] = quickpow(fac, mod - 2);
for(int i = m + 1; i >= 0; --i) inv[i] = inv[i + 1] * (i + 1) % mod;
} ll pre[maxm], suf[maxm];
In ll lag(ll k)
{
int n = m + 2;
pre[0] = k; suf[n + 1] = 1;
for(int i = 1; i <= n; ++i) pre[i] = pre[i - 1] * (k - i) % mod;
for(int i = n; i >= 0; --i) suf[i] = suf[i + 1] * (k - i) % mod;
ll ret = 0;
for(int i = 0; i <= n; ++i)
{
ll tp = (i - 1 >= 0 ? pre[i - 1] : 1) * suf[i + 1] % mod * inv[i] % mod * inv[n - i] % mod;
if((n - i) & 1) tp = -tp;
ret = (ret + y[i] * tp % mod + mod) % mod;
}
return ret;
} int main()
{
int T = read();
while(T--)
{
n = read(); m = read();
init();
for(int i = 1; i <= m; ++i) a[i] = read();
sort(a + 1, a + m + 1);
ll ans = 0;
for(int i = 1; i <= m + 1; ++i)
{
ans = (ans + lag(n - a[i - 1])) % mod;
for(int j = i; j <= m; ++j) ans = (ans - quickpow(a[j] - a[i - 1], m + 1) + mod) % mod;
}
write(ans), enter;
}
return 0;
}

[TJOI2018]教科书般的亵渎的更多相关文章

  1. 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)

    [BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...

  2. 洛谷 P4593 [TJOI2018]教科书般的亵渎

    洛谷 P4593 [TJOI2018]教科书般的亵渎 神仙伯努利数...网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了? 题目本质要求\(\sum_{i=1}^{n}i^k\) 伯努利数,\ ...

  3. BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记

    BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...

  4. BZOJ5339:[TJOI2018]教科书般的亵渎——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5339 https://www.luogu.org/problemnew/show/P4593 小豆 ...

  5. P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

    传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如 ...

  6. Luogu P4593 [TJOI2018]教科书般的亵渎

    亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...

  7. 洛谷P4593 [TJOI2018]教科书般的亵渎

    小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为\(a_i\)​,且每个怪物血量均不相同,小豆手里有无限张"亵渎".亵渎的效果是对所有的怪造成\(1\)点伤害,如果 ...

  8. 并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎

    题目大意 题目链接 题解 先将\(a\)排序. \(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上:而当\(a_m= ...

  9. 洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

    题意 题目链接 Sol 打出暴力不难发现时间复杂度的瓶颈在于求\(\sum_{i = 1}^n i^k\) 老祖宗告诉我们,这东西是个\(k\)次多项式,插一插就行了 上面的是\(O(Tk^2)\)的 ...

随机推荐

  1. netty源码解解析(4.0)-1 核心架构

    netty是java开源社区的一个优秀的网络框架.使用netty,我们可以迅速地开发出稳定,高性能,安全的,扩展性良好的服务器应用程序.netty封装简化了在服务器开发领域的一些有挑战性的问题:jdk ...

  2. 【学习笔记】JS经典异步操作,从闭包到async/await

    参考文献:王仕军——知乎专栏前端周刊 感谢作者的热心总结,本文在理解的基础上,根据自己能力水平作了一点小小的修改,在加深自己印象的同时也希望能和各位共同进步... 1. 异步与for循环 抛出一个问题 ...

  3. [HEOI2016] 字符串

    Description 给定长度为n的字符串,m次询问,每次询问s[a...b]的所有子串与s[c...d]的LCP的最大值.n,m<=10^5. Solution 感觉这种n,m<=10 ...

  4. 按值传递 vs. 按指针传递

    按值传递还是指针传递? 变量赋值有两种方式:按值传递.按"指针"传递(指针也常称为"引用").不同的编程语言赋值的方式不一样,例如Python是按"指 ...

  5. C#关闭子窗口而不释放子窗口对象的问题解决

    在网上找来一些方式,感觉还都不错,下面给出方式: 在线扫描相机的调试过程中,需要开辟调试界面来进行位置的配置.调试结束后,一种常用的方式是将调试参数保存并在下次启动时加载.另一种简单方式是直接使用该参 ...

  6. Spark中master与worker的进程RPC通信实现

    1.构建master的actor package SparkRPC import akka.actor.{Actor, ActorSystem, Props}import com.typesafe.c ...

  7. 漫画揭秘Hadoop MapReduce | 轻松理解大数据

    网址:http://www.iqiyi.com/w_19rtz04nh9.html

  8. 【mysql】service mysql start出错,mysql启动不了,解决mysql: unrecognized service错误

    service MySQL start出错,mysql启动不了,解决mysql: unrecognized service错误的方法如下: [root@ctohome.com ~]# service ...

  9. Git实战手册(二): 标签应用和版本管理

    教程所示图片使用的是 github 仓库图片,墙内朋友请移步原文地址 有空就来看看个人技术小站, 我一直都在 0. 背景介绍 当一个代码仓库进过长时间的迭代,针对不同的时期和需求,必定会有不同的版本. ...

  10. css实现照片上传的加号框

    css实现照片上传的加号框