self attention

Q=K=V :输入一个句子,那么里面的每个词都要和该句子中的所有词进行attention计算,目的是要学习句子内部词之间的依赖关系,捕获句子的内部结构。

首先,要build Q,K,V,对其进行线性变换 for example: dot,reshape, permute_dimensions

然后,我们要对序列做mask,忽略填充部分的影响,一般mask是将填充部分置零,但attention中的mask是在softmax之前,将填充部分减去一个较大的整数(这样softmax后就比较接近0)

之后,call函数

onece encoder:

vector->self attention->feed forward neural network->r

Q可以理解成篇章的词向量序列,K= V, 为问题的词向量序列,那么输入就是aligned question embedding

 transform:

就是谷歌提出的transformer 的架构。这其中左半部分是 encoder, 右半部分是 decoder.

Encoder: 这里面有 N=6 个 一样的layers, 每一层包含了两个sub-layers. 第一个sub-layer 就是多头注意力层(multi-head attention layer) 然后是一个简单的全连接层。 这里还有一个残差连接 (residual connection), 在这个基础上, 还有一个layer norm.  这里的注意力层会在下文详细解释。

Decoder: 这里同样是有六个一样的Layer是,但是这里的layer 和encoder 不一样, 这里的layer 包含了三个sub-layers,  其中有 一个self-attention layer, encoder-decoder attention layer 最后是一个全连接层。 前两个sub-layer 都是基于multi-head attention layer.  这里有个特别点就是masking,  masking 的作用就是防止在训练的时候 使用未来的输出的单词。 比如训练时, 第一个单词是不能参考第二个单词的生成结果的。 Masking就会把这个信息变成0, 用来保证预测位置 i 的信息只能基于比 i 小的输出。

tensor2tensor

可以理解成模型和各类数据集的一个集成库,可以方便的去调用,解决常见的问题。

实践路线

attention->transform->bert

理解原理->用t2t实现transform

Transform Model的更多相关文章

  1. (转) [it-ebooks]电子书列表

    [it-ebooks]电子书列表   [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...

  2. 谁动了我的特征?——sklearn特征转换行为全记录

    目录 1 为什么要记录特征转换行为?2 有哪些特征转换的方式?3 特征转换的组合4 sklearn源码分析 4.1 一对一映射 4.2 一对多映射 4.3 多对多映射5 实践6 总结7 参考资料 1 ...

  3. DirectX 总结和DirectX 9.0 学习笔记

    转自:http://www.cnblogs.com/graphics/archive/2009/11/25/1583682.html DirectX 总结 DDS DirectXDraw Surfac ...

  4. 实现Unity编辑器模式下的旋转

    最近在做一个模型展示的项目,我的想法是根据滑动屏幕的x方向差值和Y方向的差值,来根据世界坐标下的X轴和Y轴进行旋转,但是实习时候总是有一些卡顿.在观察unity编辑器下的旋转之后,发现编辑器下的旋转非 ...

  5. unity2D 船只型物体驱动的实现

    船只向前行驶的驱动力 假设在水中没有摩擦阻力,船只有惯性,船只可以转弯,按下前进键时船只会在力的作用下使得自身的物理运动方向变化到自身的前方方向,从而向前行进. 上图中 V:船当前物理速度 V1,V2 ...

  6. unity中camera摄像头控制详解

    目录 1. 缘起 2. 开发 2.1. 建立项目 2.2. 旋转 2.2.1. 四元数 2.3. 移动 2.3.1. 向量操作 2.4. 镜头拉伸 2.5. 复位 2.6. 优化 1 缘起 我们的产品 ...

  7. Spark之MLlib

    目录 Part VI. Advanced Analytics and Machine Learning Advanced Analytics and Machine Learning Overview ...

  8. 【微信小程序】安装DingoApi开发小程序api

    1.安装 composer require dingo/api 2.发布配置: php artisan vendor:publish 选择DingoApi发布. 3.向.env文件添加配置 (1)项目 ...

  9. Spring Boot笔记一

    Spring Boot 入门 Spring Boot 简介 > 简化Spring应用开发的一个框架:> 整个Spring技术栈的一个大整合:> J2EE开发的一站式解决方案: 微服务 ...

随机推荐

  1. websocket简单理解

    实现及原理 Websocket是一种在单个TCP连接上进行全双工通讯的协议. WebSocket 首先发起一个 HTTP 请求,在请求头加上 `Upgrade` 字段,该字段用于改变 HTTP 协议版 ...

  2. MII、GMII、RMII、SGMII、XGMII 接口区别

    MII即媒体独立接口,也叫介质无关接口.它是IEEE-802.3定义的以太网行业标准.它包括一个数据接口,以及一个MAC和PHY之间的管理接口(图1). 数据接口包括分别用于发送器和接收器的两条独立信 ...

  3. 面向对象object与constructor

    什么是constructor属性?它来自哪里?又将会指向何处? 什么是constructor属性? constructor是构造函数属性. 它来自哪里? 其实constructor属性是来自 prot ...

  4. Linux下安装GitHub

    安装GitHub 1.下载安装git: yum -y install git git-core git-doc 2.运行完执行 ssh-keygen -t rsa -C "your@emai ...

  5. Xeon Phi 《协处理器高性能编程指南》随书代码整理 part 2

    ▶ 第四章,逐步优化了一个三维卷积计算的过程 ● 基准代码 #include <stdio.h> #include <stdlib.h> #include <string ...

  6. python 字典中 重复值去除

    tuple_r_dict = lambda _dict: dict(val[::-1] for val in _dict.items()) # Python3.x tuple_r_dict(tuple ...

  7. 获取电脑的 SN 码

    wmic bios get serialnumber

  8. Java 就业班 Web框架

  9. maven项目发布到tomcat的错误

    Could not publish to the server. java.lang.IndexOutOfBoundsException "Updating status for Tomca ...

  10. css选择器querySelectorAll

    * querySelectorAll(css的选择器)* 通过css的选择器获取到的一组元素* 获取的也是类数组** 主语* document 从整个页面去获取一组元素* 父级 从父级下去获取一组元素 ...